| 注册
首页|期刊导航|重庆理工大学学报|一种改进多尺度融合的电动汽车充电口识别方法

一种改进多尺度融合的电动汽车充电口识别方法

赵晓东 刘瑞庆 王向 温士涛

重庆理工大学学报2024,Vol.38Issue(13):118-126,9.
重庆理工大学学报2024,Vol.38Issue(13):118-126,9.DOI:10.3969/j.issn.1674-8425(z).2024.07.015

一种改进多尺度融合的电动汽车充电口识别方法

An improved multi-scale fusion identification method for electric vehicle charging ports

赵晓东 1刘瑞庆 1王向 1温士涛2

作者信息

  • 1. 河北科技大学 信息科学与工程学院,石家庄 050018
  • 2. 中国人民解放军93507部队,石家庄 050200
  • 折叠

摘要

Abstract

To address the low accuracy in electric vehicle charging port recognition due to the complex background during the operation of unmanned automatic charging stations,this paper proposes a charging port recognition method for electric vehicles based on the improved YOLOv5 algorithm.First,the method incorporates a weighted bidirectional feature pyramid structure to enhance information fusion capabilities between different levels.Second,it introduces GhostConv,a depthwise separable convolution from the GhostNet network structure,replacing the ordinary convolution layers in the original feature extraction network,reducing the computational overhead of the model.The main network employs the SENet structure to increase the receptive field information,enhancing the model's ability to extract charging port features.Meanwhile,the loss function of the model is improved by introducing the EIoU loss function to replace the original CIoU loss function,enhancing the accuracy of bounding box regression.Our experimental results demonstrate the improved model,compared to the original YOLOv5 algorithm,reduces the model size by 6.94 MB and achieves a detection accuracy of 94.75%on a self-made,diverse dataset of electric vehicle charging ports.Furthermore,compared to the mainstream detection algorithms,it delivers superior detection accuracy and speed,making it suitable for target detection of electric vehicle charging ports in complex background environments.

关键词

图像处理/目标检测/电动汽车充电口/注意力机制/多尺度融合/YOLOv5

Key words

picture processing/object detection/electric vehicle charging port/attention mechanism/multiscale fusion/YOLOv5

分类

信息技术与安全科学

引用本文复制引用

赵晓东,刘瑞庆,王向,温士涛..一种改进多尺度融合的电动汽车充电口识别方法[J].重庆理工大学学报,2024,38(13):118-126,9.

基金项目

河北省高等学校科学技术重点研究项目(ZD2020318) (ZD2020318)

河北省教育厅青年基金项目(QN2023185) (QN2023185)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文