| 注册
首页|期刊导航|重庆理工大学学报|面向财务审计的数据异常侦测算法研究

面向财务审计的数据异常侦测算法研究

张学凯 张仰森 刘帅康 朱思文 孙圆明

重庆理工大学学报2024,Vol.38Issue(13):158-165,8.
重庆理工大学学报2024,Vol.38Issue(13):158-165,8.DOI:10.3969/j.issn.1674-8425(z).2024.07.020

面向财务审计的数据异常侦测算法研究

Research on data anomaly detection algorithm for financial audit

张学凯 1张仰森 1刘帅康 1朱思文 1孙圆明1

作者信息

  • 1. 北京信息科技大学智能信息处理研究所,北京 100192
  • 折叠

摘要

Abstract

To better promote the digitalization of audit and fulfil the task of detecting data anomalies in financial audits,a CMA-Resnet18 model based on an improved attention mechanism CMA(Channel Mixed Attention mechanism)of independent research is designed,and a detection dataset construction method based on the idea of digital image transformation is proposed.First,the CMA network is employed to globally weight each channel of the sample and weight different channels of the sample with fusion features to realize the global"attention"data enhancement of the sample data.Then,the local features of the sample data are extracted by Resnet18 model(residual network18).Finally,the intelligent detection of financial data anomalies is realized.Our experimental results show on the financial audit anomaly detection dataset,the evaluation of the classical classification network is higher than 90%,proving the effectiveness of the dataset construction method;the F1 value of the CMA-Resnet18 model is 94.31%,1.49%higher than that of Resnet18,demonstrating the model performs better in the detection tasks.Our experiments with classical classification networks and their CMA variants on the Cifar10 public dataset show the accuracy of the CMA variants is generally higher than that of their original networks,demonstrating the effectiveness and generalization of the CMA module.

关键词

审计数字化/数图转换/数据集构建/改进注意力机制/残差网络

Key words

audit digitization/digital image transformation/dataset construction/improved attention mechanisms/residual network

分类

信息技术与安全科学

引用本文复制引用

张学凯,张仰森,刘帅康,朱思文,孙圆明..面向财务审计的数据异常侦测算法研究[J].重庆理工大学学报,2024,38(13):158-165,8.

基金项目

北京市社会科学基金规划项目(21GLA007) (21GLA007)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文