| 注册
首页|期刊导航|重庆理工大学学报|改进MSCNN-ECA的轴承故障诊断方法研究

改进MSCNN-ECA的轴承故障诊断方法研究

沈启敏 贾月静 程艳

重庆理工大学学报2024,Vol.38Issue(13):180-187,8.
重庆理工大学学报2024,Vol.38Issue(13):180-187,8.DOI:10.3969/j.issn.1674-8425(z).2024.07.023

改进MSCNN-ECA的轴承故障诊断方法研究

Research on improving the bearing fault diagnosis method of MSCNN-ECA

沈启敏 1贾月静 2程艳1

作者信息

  • 1. 晋中信息学院,山西 晋中 030800
  • 2. 太原重工轨道交通设备有限公司,太原 030032
  • 折叠

摘要

Abstract

Convolutional neural networks(CNNs),as powerful feature extraction tools,can effectively extract fault-bearing data from complex environments,thus improving recognition accuracy.This paper proposes a convolutional neural network-based bearing fault diagnosis method.First,rolling bearing data is sampled,and two-dimensional image data is generated through continuous wavelet transformation.Next,a Multiscale Convolutional Neural Network(MSCNN)is employed to extract features from the input data.Efficient convolution modules with residual structures maximize the retention of valid feature information,followed by feature selection using Channel Attention Modules(Efficient Channel Attention,ECA).Finally,after feature mapping via fully connected layers,the model predicts fault categories.Experimental validation is conducted by employing the dataset from Case Western Reserve University and the results generated from CNN-LSTM,ResNet,LeNet,and other models are compared.The proposed method consumes less time and achieves the highest diagnostic accuracy.Under single-load conditions,it achieves 100%diagnostic accuracy,while under multi-load conditions,it reaches an accuracy as high as 99.46%,surpassing other advanced algorithms.Additionally,the bearing data from Jiangnan University is employed for generalization validation,showing impressive transfer effects.

关键词

卷积神经网络/轴承/注意力机制/故障诊断

Key words

convolutional neural networks/bearing/attention mechanism/fault diagnosis

分类

信息技术与安全科学

引用本文复制引用

沈启敏,贾月静,程艳..改进MSCNN-ECA的轴承故障诊断方法研究[J].重庆理工大学学报,2024,38(13):180-187,8.

基金项目

山西省高等学校科技创新项目(2023L510) (2023L510)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文