|国家科技期刊平台
首页|期刊导航|电讯技术|基于强化学习的能量受限无人机通信感知轨迹规划方法

基于强化学习的能量受限无人机通信感知轨迹规划方法OA北大核心CSTPCD

A Reinforcement Learning-based Trajectory Planning Method for Energy-constraint UAV Communication and Sensing

中文摘要英文摘要

针对能量受限下无人机(Unmanned Aerial Vehicle,UAV)辅助通信感知中的无人机轨迹规划问题,采用激光无线充电的方式为无人机额外提供能量,同时考虑了无人机动力学和感知通信速率等约束,以对移动目标感知互信息量最大化为目标,建立了移动目标感知通信轨迹规划问题.为了求解建立的包含大量复杂约束的优化问题,将原优化问题建立为马尔可夫决策过程,把无人机运动、能量变化、目标感知、基站通信等过程建模为环境空间,无人机电机转速设计为动作空间,并采用深度强化学习方法进行训练,实现无人机的轨迹规划.由于考虑了无人机动力学,规划得到的轨迹更符合无人机运动特性,并且训练得到的最优控制序列可以直接作用于无人机电机转速,降低了无人机控制难度.在设计的实验场景下,相较于传统最优控制方法,所提方法对移动目标感知互信息量提升了约3 倍.

For the unmanned aerial vehicle(UAV)trajectory planning problem in UAV-assisted communication and sensing with energy constraints,the authors adopt laser wireless charging to provide additional energy for the UAV,and at the same time consider the constraints of the UAV dynamics and sensing communication rate,and establishe the moving target sensing and communication trajectory planning problem with the goal of maximizing the mutual information of moving target sensing.In order to solve the established optimization problem containing a large number of complex constraints,the original optimization problem is established as a Markov Decision Process,and the processes of UAV motion,energy change,target sensing,and base station communication are modeled as the environment space,and the UAV motor rotation speed is designed as the action space,and a deep reinforcement learning method is used for training to achieve UAV trajectory planning.Due to the consideration of UAV dynamics,the planned trajectory is more in line with the UAV motion characteristics,and the optimal control sequence obtained from the training can be directly applied to the UAV motor,which reduces the difficulty of UAV control.In the designed experimental scenarios,the mutual information of moving target sensing of the proposed method is improved by a factor of about three compared with that of the traditional optimal control method.

张智琛;何振清;李彬

四川大学 空天科学与工程学院,成都 610207

电子信息工程

无人机辅助通信感知轨迹规划深度强化学习激光充电动力学约束

unmanned aerial vehicle(UAV)assisted communication and sensingtrajectory optimaldeep reinforcement learninglaser chargingdynamic constraints

《电讯技术》 2024 (007)

1033-1041 / 9

中央高校基本科研业务费专项资金资助(YJ202305)

10.20079/j.issn.1001-893x.240422002

评论