| 注册
首页|期刊导航|大地测量与地球动力学|基于最大熵准则的GNSS/SINS组合导航滤波算法

基于最大熵准则的GNSS/SINS组合导航滤波算法

林雪原 潘新龙 王玮

大地测量与地球动力学2024,Vol.44Issue(8):787-792,6.
大地测量与地球动力学2024,Vol.44Issue(8):787-792,6.DOI:10.14075/j.jgg.2023.11.144

基于最大熵准则的GNSS/SINS组合导航滤波算法

GNSS/SINS Integrated Navigation Filtering Algorithm Based on Maximum Entropy Criterion

林雪原 1潘新龙 2王玮1

作者信息

  • 1. 烟台南山学院智能科学与工程学院,山东省龙口市大学路12号,265713
  • 2. 海军航空大学信息融合研究所,山东省烟台市,264001
  • 折叠

摘要

Abstract

The traditional Kalman filter(KF)of GNSS/SINS integrated navigation system is optimal under the minimum mean square error(MMSE)criterion and under the Gaussian hypothesis.Howev-er,when the measurement noise is disturbed by heavy tail pulse noise,the filtering performance of KF is seriously degraded.To solve this problem,we propose a maximum entropy Kalman filter(MCKF)for integrated navigation system.First,we establish the state equation and measurement equation of MCKF.Then,using the principle of maximum entropy,we establish a Kalman filter based on the maximum entropy criterion,and design its filter iteration flow.Finally,we simulate the GNSS/SINS integrated navigation system in the environment of mixed Gaussian noise and heavy tail pulse noise,respectively.The simulation results show that KF performs better than MCKF under mixed Gaussian noise interference,MCKF has better filtering performance than KF under the interference of heavy tail pulse noise,and MCKF is equivalent to KF when the kernel bandwidth tends to infinity.

关键词

组合导航/最大熵准则/核带宽/迭代阈值/卡尔曼滤波器

Key words

integrated navigation/maximum entropy criterion/kernel bandwidth/iterative threshold/Kalman filter

分类

天文与地球科学

引用本文复制引用

林雪原,潘新龙,王玮..基于最大熵准则的GNSS/SINS组合导航滤波算法[J].大地测量与地球动力学,2024,44(8):787-792,6.

基金项目

国家自然科学基金(62076249) (62076249)

山东省自然科学基金(ZR2020MF154). National Natural Science Foundation of China,No.62076249 (ZR2020MF154)

Natural Science Foundation of Shandong Province,No.ZR2020MF154. ()

大地测量与地球动力学

OA北大核心CSTPCD

1671-5942

访问量0
|
下载量0
段落导航相关论文