一种大尺度区域GNSS坐标时间序列自适应时空滤波方法OA北大核心CSTPCD
An Adaptive Spatiotemporal Filtering Method for GNSS Coordinate Time Series in Large-Scale Region
提出一种GNSS坐标时间序列自适应时空滤波方法,在规定阈值下将滤波区域自适应分为若干个子区域,进行共模误差的提取和去除.对陆态网184个GNSS站点垂向坐标序列进行时空滤波,3组随机实验中,自适应PCA时空滤波后的站点序列平均RMS值减少约39.7%、38.4%和39.7%,且优于整体PCA滤波.进一步分析滤波前后站点噪声特性变化,结果显示,相比于整体PCA滤波,自适应滤波方法中站点残差序列幂律噪声减少约17.8%.
We proposed an adaptive spatiotemporal filtering method for GNSS coordinate time series,which dynamically subdivides the filtering region into several subregions,facilitating the extraction and elimination of common mode errors under specified thresholds.We conduct a case study on 184 vertical GNSS coordinate time series from CMONOC.The results of three groups of randomized experiments show that the average RMS values of the station sequences after adaptive PCA spatiotemporal filtering are reduced by about 39.7%,38.4%,and 39.7%on average compared with that before the filtering,and the filtering effect is better than that of the overall PCA spatiotemporal filtering method.Analysis of pre-and post-filtering site noise charac-teristics reveals that,compared to traditional PCA filtering,our method resulted in an additional attenuation of approximately 17.8%in power-law noise amplitudes within site residual time series.
刘斌;肖紫恩;骆亚波;蒋一帆
长沙理工大学公路地质灾变预警空间信息技术湖南省工程实验室,长沙市万家丽南路二段960号,410114||长沙理工大学交通运输工程学院,长沙市万家丽南路二段960号,410114
测绘与仪器
GNSS坐标时间序列大尺度区域PCA自适应时空滤波
GNSS coordinate time serieslarge-scale regionPCAadaptive spatiotemporal filtering
《大地测量与地球动力学》 2024 (008)
793-796,846 / 5
湖南省教育厅优秀青年基金(22B0346);国家自然科学基金(42274055,42074013);湖南省自然资源厅科技计划(HBZ20240115). Excellent Youth Fund of the Education Department of Hunan Province,No.22B0346;National Natural Science Foundation of China,No.42274055,42074013;Science and Technology Plan of Department of Natural Resources of Hunan Province,No.HBZ20240115.
评论