| 注册
首页|期刊导航|大连理工大学学报|基于改进机器学习的PM2.5浓度预测模型研究

基于改进机器学习的PM2.5浓度预测模型研究

丁成亮 郑洪波

大连理工大学学报2024,Vol.64Issue(4):353-360,8.
大连理工大学学报2024,Vol.64Issue(4):353-360,8.DOI:10.7511/dllgxb202404004

基于改进机器学习的PM2.5浓度预测模型研究

Study of PM2.5 concentration prediction model based on improved machine learning

丁成亮 1郑洪波1

作者信息

  • 1. 大连理工大学环境学院,辽宁大连 116024
  • 折叠

摘要

Abstract

In response to the problem of performance decrease of existing machine learning model for predicting PM2.5 concentration because that the model is too complex,and does not consider spatio-temporal information and effective missing values imputation is not accurate,random forest is used instead of statistical methods to fill in missing values,and spatio-temporal factors are incorporated to improve model accuracy.Combining remote sensing data,meteorological and collaborative pollutant data,a model(K-means-RF-XGBoost model)suitable for PM2.5 concentration prediction in coastal cities is established,with a prediction time of only 4%of that of BP neural networks.The prediction of PM2.5 concentration of the model is trained and tested using real-time monitoring data from Dalian in 2019.The results show that the established K-means-RF-XGBoost model has high accuracy in predicting PM2.5 concentration,and compared to the same model without considering spatio-temporal information,the root mean square error(erms)decreases by about 48%,and coefficient of determination(R2)increases by about 10%.It effectively predicts high PM2.5 concentrations and is suitable for large fluctuation ranges,such as an R of 0.935 is achieved in the testing set for the spring model.At the same time,it performs well in daily prediction,with an R2 of 0.819.This study provides a new idea for predicting PM2.5 concentration in coastal cities.

关键词

PM2.5浓度预测/时空信息/缺失值填补/机器学习

Key words

PM2.5 concentration prediction/spatio-temporal information/missing values imputation/machine learning

分类

资源环境

引用本文复制引用

丁成亮,郑洪波..基于改进机器学习的PM2.5浓度预测模型研究[J].大连理工大学学报,2024,64(4):353-360,8.

基金项目

国家自然科学基金资助项目(42071273) (42071273)

中央高校基本科研业务费专项资金资助项目(DUT22LAB132). (DUT22LAB132)

大连理工大学学报

OA北大核心CSTPCD

1000-8608

访问量0
|
下载量0
段落导航相关论文