| 注册
首页|期刊导航|电力信息与通信技术|基于差分隐私的个性化联邦电力负荷预测方案

基于差分隐私的个性化联邦电力负荷预测方案

谭智文 徐茹枝 关志涛

电力信息与通信技术2024,Vol.22Issue(7):18-26,9.
电力信息与通信技术2024,Vol.22Issue(7):18-26,9.DOI:10.16543/j.2095-641x.electric.power.ict.2024.07.03

基于差分隐私的个性化联邦电力负荷预测方案

A Personalized Federal Power Load Forecasting Scheme Based on Differential Privacy

谭智文 1徐茹枝 1关志涛1

作者信息

  • 1. 华北电力大学控制与计算机工程学院,北京市昌平区 102206
  • 折叠

摘要

Abstract

In order to achieve a power load forecasting scheme with both model personalization and privacy-preserving personalization,this paper proposes a personalized federal power load forecasting scheme based on differential privacy. The scheme performs cluster-based training based on the missing cases and temporal features of data to obtain a local personalized model applicable to local data. On this basis,a personalized differential privacy protection scheme is proposed,which adjusts the allocation of the privacy budget according to the distance from the client to the current cluster center to ensure the data security and achieve the personalization of privacy protection at the client level. Experiments show that the algorithm can be trained to obtain a personalization model with better utility while ensuring data security.

关键词

电力负荷预测/个性化联邦学习/差分隐私/隐私保护/隐私预算/聚类

Key words

power load forecasting/personalized federal learning/differential privacy/privacy protection/privacy budget/clustering

分类

信息技术与安全科学

引用本文复制引用

谭智文,徐茹枝,关志涛..基于差分隐私的个性化联邦电力负荷预测方案[J].电力信息与通信技术,2024,22(7):18-26,9.

基金项目

国家电网有限公司总部科技项目资助"面向新型配电系统的网络安全动态防御关键技术深化研究"(5400-202340217A-1-1-ZN). (5400-202340217A-1-1-ZN)

电力信息与通信技术

OACSTPCD

1672-4844

访问量0
|
下载量0
段落导航相关论文