| 注册
首页|期刊导航|电网技术|基于相似日聚类及模态分解的短期光伏发电功率组合预测研究

基于相似日聚类及模态分解的短期光伏发电功率组合预测研究

龙小慧 秦际赟 张青雷 段建国

电网技术2024,Vol.48Issue(7):2948-2957,中插86,11.
电网技术2024,Vol.48Issue(7):2948-2957,中插86,11.DOI:10.13335/j.1000-3673.pst.2023.0897

基于相似日聚类及模态分解的短期光伏发电功率组合预测研究

Short-term Photovoltaic Power Prediction Study Based on Similar Day Clustering and Modal Decomposition

龙小慧 1秦际赟 2张青雷 2段建国2

作者信息

  • 1. 上海海事大学物流工程学院,上海市浦东区 201306
  • 2. 上海海事大学中国(上海)自贸区供应链研究院,上海市 浦东区 201306
  • 折叠

摘要

Abstract

A short-term forecast of photovoltaic power(PV)is an essential component of power plant generation planning and scheduling,contributing to the dynamic stability of the power system.To address noise interference and unstable single-model predictions in photovoltaic time series forecasting,this paper proposes a combined prediction model based on improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN).Firstly,important meteorological features are extracted using correlation coefficients,and the original dataset is divided into categories such as clear sky,clear-to-partly cloudy,and rainy using fuzzy C-means clustering(FCM).Next,for each similar day,the last day is the target prediction day,and the rest is historical training data.ICEEMDAN decomposes the historical training dataset into several more regular subsequences.These subsequences are then reconstructed using permutation entropy(PE).Finally,the CNN-BiGRU-ATTENTION neural network,which combines convolutional neural network(CNN),bidirectional gated recurrent unit(BiGRU),and attention mechanism,is used to predict the high-frequency,low-frequency terms,and trend terms predicted by least squares support vector regression(LSSVR),and the prediction results are superimposed to get the final Predicted value of PV.Through practical verification,this combined model effectively addresses issues such as low accuracy and unstable predictions under different weather conditions;Compared with other modal decompositions,it can more accurately predict the fluctuating local features.

关键词

光伏发电/模态分解/相似日聚类/卷积神经网络/最小二乘支持向量回归机/注意力机制

Key words

PV power/mode decomposition/fuzzy c-means clustering/convolutional neural networks/least squares support vector machine regression/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

龙小慧,秦际赟,张青雷,段建国..基于相似日聚类及模态分解的短期光伏发电功率组合预测研究[J].电网技术,2024,48(7):2948-2957,中插86,11.

电网技术

OA北大核心CSTPCD

1000-3673

访问量0
|
下载量0
段落导航相关论文