| 注册
首页|期刊导航|安全与环境工程|基于可穿戴惯性传感技术的人体步态阶段识别

基于可穿戴惯性传感技术的人体步态阶段识别

陈斯琪 寇俊辉 陈小路 吴铭渝 付国荣 郭良杰

安全与环境工程2024,Vol.31Issue(4):11-19,36,10.
安全与环境工程2024,Vol.31Issue(4):11-19,36,10.DOI:10.13578/j.cnki.issn.1671-1556.20221657

基于可穿戴惯性传感技术的人体步态阶段识别

Human gait phase recognition based on wearable inertial sensing technology

陈斯琪 1寇俊辉 1陈小路 2吴铭渝 1付国荣 3郭良杰4

作者信息

  • 1. 中国地质大学(武汉)工程学院,湖北 武汉 430074
  • 2. 湖北省自然灾害应急技术中心,湖北 武汉 430064
  • 3. 烟台汽车工程职业学院,山东 烟台 265500
  • 4. 中国地质大学(武汉)工程学院,湖北 武汉 430074||岩土钻掘与防护教育部工程研究中心,湖北 武汉 430074
  • 折叠

摘要

Abstract

In order to realize recognition of human gait phases based on wearable inertial sensing technolo-gy,the human gait phase recognition models based on feature selection,time proportion optimization,and machine learning with multiple data types,multiple features,and multiple classifiers were developed to rec-ognize the human gait phases,and the recognition effect of the three models are compared.The results show that the average accuracy of human gait phase recognition based on feature selection is 73.66%,on time proportion optimization is 90.96%,and on machine learning models trained with pedal pitch angle data and acceleration data is 97.04%and 86.80%,respectively.Different recognition methods can be selectively used according to different human gait phases and application scenarios to achieve desired recognition effects.The comprehensive use of time proportion optimization algorithm and machine learning methods can achieve high comprehensive recognition accuracy.The paper provides a reference for further research on human behavior based on wearable sensors.

关键词

人体步态阶段识别/可穿戴惯性传感技术/特征选择/时间比例优化/机器学习

Key words

human gait phase recognition/wearable inertial sensing technology/feature selection/time pro-portion optimization/machine learning

分类

资源环境

引用本文复制引用

陈斯琪,寇俊辉,陈小路,吴铭渝,付国荣,郭良杰..基于可穿戴惯性传感技术的人体步态阶段识别[J].安全与环境工程,2024,31(4):11-19,36,10.

基金项目

湖北省安全生产专项资金科技项目(SJZX20230904) (SJZX20230904)

武汉市科技局知识创新专项曙光计划项目(2022020801020209) (2022020801020209)

中央高校基本科研业务费专项资金项目 ()

安全与环境工程

OA北大核心CSTPCD

1671-1556

访问量0
|
下载量0
段落导航相关论文