| 注册
首页|期刊导航|高师理科学刊|求解常微分方程的两类零化神经网络

求解常微分方程的两类零化神经网络

孙敏 田茂英 郭玉霞 刘巧莲

高师理科学刊2024,Vol.44Issue(6):6-10,5.
高师理科学刊2024,Vol.44Issue(6):6-10,5.DOI:10.3969/j.issn.1007-9831.2024.06.002

求解常微分方程的两类零化神经网络

Two types of zeroing neural networks for solving ordinary differential equations

孙敏 1田茂英 2郭玉霞 2刘巧莲3

作者信息

  • 1. 枣庄学院 数学与统计学院,山东 枣庄 277100
  • 2. 山东煤炭卫生学校 生理学教研室,山东 枣庄 277100
  • 3. 枣庄学院信息科学与工程学院,山东 枣庄 277100
  • 折叠

摘要

Abstract

Two types of zeroing neural networks are proposed for solving ordinary differential equations.By rewriting ordinary differential equations into vector valued uncertain error functions,substituting vector valued uncertain error functions into the zeroing neural network design formula,a class of continuous time zeroing neural networks for solving ordinary differential equations is proposed,which converges to zero exponentially.For potential digital hardware realization,a class of discrete-time neural networks was designed by discretizing the continuous time zeroing neural network.At the same time,sufficient and necessary conditions are provided to ensure that the sequence generated by the discrete-time neural network converges to zero with a truncation error of O(τ2)(τ>0 denoting the sampling period).The effectiveness of continuous time zeroing neural networks and discrete-time zeroing neural networks was verified through two numerical experiments.

关键词

零化神经网络/常微分方程/截断误差

Key words

zeroing neural network/ordinary differential equations/truncation error

分类

数理科学

引用本文复制引用

孙敏,田茂英,郭玉霞,刘巧莲..求解常微分方程的两类零化神经网络[J].高师理科学刊,2024,44(6):6-10,5.

基金项目

枣庄学院博士科研启动基金项目 ()

枣庄学院大学生创新创业项目 ()

山东省自然科学基金项目(ZR2022MA081) (ZR2022MA081)

高师理科学刊

1007-9831

访问量0
|
下载量0
段落导航相关论文