| 注册
首页|期刊导航|光通信技术|基于强化学习的异构网络接入选择算法

基于强化学习的异构网络接入选择算法

张慧颖 马成宇 李月月 梁士达 盛美春

光通信技术2024,Vol.48Issue(4):77-82,6.
光通信技术2024,Vol.48Issue(4):77-82,6.DOI:10.13921/j.cnki.issn1002-5561.2024.04.015

基于强化学习的异构网络接入选择算法

Heterogeneous network access selection algorithm based on reinforcement learning

张慧颖 1马成宇 1李月月 1梁士达 1盛美春1

作者信息

  • 1. 吉林化工学院信息与控制工程学院,吉林吉林 132022
  • 折叠

摘要

Abstract

Aiming at the challenge of enhancing throughput and maintaining high fairness in heterogeneous network access selec-tion,a proximal policy optimization(PPO)algorithm based on reinforcement learning is proposed.This algorithm interacts with the environment and samples data,aiming to maximize users'long-term throughput and satisfaction.It randomly simulates user locations,collects user attribute data for model training,and acquires the optimal network access point allocation strategy.The simulation results show that compared with traditional algorithms,when the number of access users reaches the maximum,the PPO algorithm can increase throughput by 40%to 70%,while the average user satisfaction can still exceed 30%,and the user fairness index can reach 0.82.

关键词

强化学习/吞吐量/体验质量/公平指数

Key words

reinforcement learning/throughput/quality of experience/fairness indices

分类

信息技术与安全科学

引用本文复制引用

张慧颖,马成宇,李月月,梁士达,盛美春..基于强化学习的异构网络接入选择算法[J].光通信技术,2024,48(4):77-82,6.

基金项目

吉林省科技厅自然科学基金联合基金(No.YDZJ202101ZYTS189)资助. (No.YDZJ202101ZYTS189)

光通信技术

OA北大核心

1002-5561

访问量0
|
下载量0
段落导航相关论文