|国家科技期刊平台
首页|期刊导航|中国妇幼健康研究|孤独症儿童的肠道菌群特征分析和筛查模型构建

孤独症儿童的肠道菌群特征分析和筛查模型构建OACSTPCD

Characteristic analysis of gut microbiota and screening model construction in children with autism spectrum disorder

中文摘要英文摘要

目的 探讨孤独症谱系障碍(ASD)患儿和健康儿童之间肠道菌群组成的差异,并使用机器学习算法构建疾病筛查模型,提供基于肠道菌群生物标志物的非侵入性孤独症筛查手段.方法 本研究于2019年12月至2023年4月,在济南市、遵义市、香港特别行政区以及上海市招募149名2.5~4.5岁孤独症儿童为孤独症组,按年龄、性别1∶1匹配的149名健康儿童为对照组,采集粪便样本,通过16S rRNA基因V3-V4区测序收集两组儿童肠道菌群相关指标.在属水平,使用随机森林、支持向量机、K近邻算法、朴素贝叶斯分类器4种机器学习算法在模型开发数据集中构建孤独症分类模型,识别最具判别性的菌属组合,并评估模型在两个独立外部测试数据集中的泛化能力.结果 ①孤独症组的菌群多样性显著高于对照组(Chao指数=118.00、105.00,Shannon指数=3.46、3.00,P=0.023、0.001).②孤独症儿童和对照儿童肠道菌群结构存在显著差异(F=5.198,R2=0.052,P<0.001).③共筛选出14个特征菌属.其中孤独症组中丰度较高的菌属为Phocaeicola、Anaerobutyricum、Faecalibacterium、Blautia、Oscillibacter、Lachnospira、Parabacteroides、Flintibacter 和 Anthropogastromicrobium,对照组 中丰度较高的 菌属为Ruthenibacterium、Flavonifractor、Bifidobacterium、Anaerostipes 和Eisenbergiella.④基于 14 个菌属组合的随机森林模型在模型开发数据上具有最优分类性能,训练集中曲线下面积(AUC)为100%(95%CI:100%~100%),验证集中AUC为93.94%(95%CI:88.13%~99.74%).在两个独立的外部测试集中,朴素贝叶斯模型则展现出最佳的泛化性能,AUC分别为63.83%(95%CI:51.99%~75.67%)和60.19%(95%CI:47.83%~72.55%).结论 孤独症和健康儿童肠道微生物群落存在显著差异,且特定肠道生物标志物对孤独症疾病状态具有分类能力,提示肠道微生物具有作为儿童早期孤独症无创筛查标志物的潜在作用.

Objective To investigate the differences of gut microbiota composition between children with autism spectrum disorder(ASD)and health children,and to construct a disease screening model using machine learning algorithm to provide a non-invasive method for autism screening based on biomarkers of gut microbiota.Methods From December 2019 to April 2023,this study recruited 149 ASD children aged 2.5 to 4.5 years from Jinan,Zunyi,Hong Kong and Shanghai,as the autism group.Additionally,149 healthy children matched 1∶1 by age and gender were recruited as the control group.Fecal samples were collected,and gut microbiota-related indices were gathered through 16S rRNA gene V3-V4 region sequencing for both groups.At the genus level,four machine learning algorithms,random forest,support vector machine,K-nearest neighbors,and naive bayes classifier,were used to construct an autism classification model in the model development dataset,identifying the most discriminative bacterial genus combinations,and the generalization ability of the models was evaluated in two independent external test datasets.Results ①The gut microbiota diversity of the autism group was significantly higher than that in the control group(Chao index=118.00,105.00;Shannon index=3.46,3.00;P=0.023,0.001).②There were significant differences in gut microbiota structure between autism children and control children(F=5.198,R2=0.052,P<0.001).③ A total of 14 characteristic genera were identified.The genera with higher abundance in the autism group were Phocaeicola,Anaerobutyricum,Faecalibacterium,Blautia,Oscillibacter,Lachnospira,Parabacteroides,Flintibacter,and Anthropo gastromicrobium,and the genera with higher abundance in the control group were Ruthenibacterium,Flavonifractor,Bifidobacterium,Anaerostipes,and Eisenbergiella.④The random forest model based on the combination of 14 genera showed the best classification performance in the model development dataset,with the training set AUC of 100% (95% CI:100% -100% )and validation set AUC of 93.94% (95% CI:88.13% -99.74% ).In two independent external test datasets,the Naive Bayes model showed the best generalization performance,with AUC of 63.83% (95% CI:51.99% -75.67% )and 60.19% (95% CI:47.83% -72.55% ),respectively.Conclusion There are significant differences in the gut microbiota communities between autism children and control children,and specific gut microbiota biomarkers have the capability to classify autism disease states,suggesting that gut microbiota has potential significance as a non-invasive screening biomarker for early autism detection in children.

庞许颖;张强;王玥珠;赵红洋;郑华军;蒋泓

复旦大学公共卫生学院妇幼与儿少卫生教研室,国家卫生健康委员会卫生技术评估重点实验室,上海 200032遵义医科大学附属医院妇产科,贵州遵义 563000上海市生物医药技术研究院,上海市疾病与健康基因组学重点实验室,国家卫生健康委生育调节药械重点实验室,上海 200237山东第一医科大学附属中心医院儿科,山东济南 250013

预防医学

肠道菌群孤独症儿童生物标志物机器学习16S rRNA

gut microbiotaautismchildrenbiomarkersmachine learning16S rRNA

《中国妇幼健康研究》 2024 (007)

1-11 / 11

国家自然科学基金(82181220077,8237120466);复旦大学公共卫生学院嘉定区卫生健康委公共卫生高质量发展重点学科、重点专项(GWGZLXK-2023-04);上海市加强公共卫生体系建设三年行动计划(2023-2025年)重点学科(GWVI-11.1-32)

10.3969/j.issn.1673-5293.2024.07.001

评论