| 注册
首页|期刊导航|航空科学技术|基于DAM-QLSTM混合模型的辅助动力装置性能参数预测方法

基于DAM-QLSTM混合模型的辅助动力装置性能参数预测方法

王坤 朱一扬

航空科学技术2024,Vol.35Issue(7):40-48,9.
航空科学技术2024,Vol.35Issue(7):40-48,9.DOI:10.19452/j.issn1007-5453.2024.07.004

基于DAM-QLSTM混合模型的辅助动力装置性能参数预测方法

Prediction Method of Auxiliary Power Unit Performance Parameter Based on DAM-QLSTM Mixed Model

王坤 1朱一扬1

作者信息

  • 1. 中国民航大学,天津 300300
  • 折叠

摘要

Abstract

Accurate prediction of the Exhaust Gas Temperature(EGT)of the aircraft Auxiliary Power Unit(APU)can effectively monitor the future operating status of the APU and prevent from safety accidents.An APU exhaust gas temperature prediction model incorporating Dual-stage Attention Mechanism(DAM)and quantile-loss guided Long Short-Term Memory(LSTM)network is proposed.The DAM is introduced to effectively quantify the correlation of input variables with EGT and to enhance the effects of historical key information on the output.Secondly,quantile-loss is used to optimize the loss function of the LSTM network to improve the prediction ability of the model further.The experimental results show that for single-step and multi-step prediction of EGT,the prediction accuracy of the proposed model is improved to a large extent compared with other prediction models,which provides a certain reference for short-term APU performance trend prediction.

关键词

辅助动力装置/排气温度/长短期记忆网络/注意力机制/分位数损失

Key words

APU/EGT/LSTM/attention mechanism/quantile-loss

分类

航空航天

引用本文复制引用

王坤,朱一扬..基于DAM-QLSTM混合模型的辅助动力装置性能参数预测方法[J].航空科学技术,2024,35(7):40-48,9.

基金项目

国家自然科学基金(62173331) National Natural Science Foundation of China(62173331) (62173331)

航空科学技术

1007-5453

访问量0
|
下载量0
段落导航相关论文