|国家科技期刊平台
首页|期刊导航|航空科学技术|基于DAM-QLSTM混合模型的辅助动力装置性能参数预测方法

基于DAM-QLSTM混合模型的辅助动力装置性能参数预测方法OA

Prediction Method of Auxiliary Power Unit Performance Parameter Based on DAM-QLSTM Mixed Model

中文摘要英文摘要

对飞机辅助动力装置(APU)排气温度(EGT)进行准确预测,能有效监测APU未来工作状态,预防安全事故发生.本文提出一种融合双阶段注意力机制(DAM),以及分位数损失(quantile-loss)引导的长短期记忆(LSTM)网络的APU排气温度预测模型.采用双阶段注意力机制,能有效量化输入变量与EGT的关联度,并加强历史关键信息对输出的作用效果.使用分位数损失来优化LSTM网络的损失函数,进一步提高模型的预测能力.试验结果表明,对于EGT的单步与多步预测,与其他预测模型相比,所提模型的预测精度有较大程度提高,为短期APU性能变化趋势预测提供一定参考.

Accurate prediction of the Exhaust Gas Temperature(EGT)of the aircraft Auxiliary Power Unit(APU)can effectively monitor the future operating status of the APU and prevent from safety accidents.An APU exhaust gas temperature prediction model incorporating Dual-stage Attention Mechanism(DAM)and quantile-loss guided Long Short-Term Memory(LSTM)network is proposed.The DAM is introduced to effectively quantify the correlation of input variables with EGT and to enhance the effects of historical key information on the output.Secondly,quantile-loss is used to optimize the loss function of the LSTM network to improve the prediction ability of the model further.The experimental results show that for single-step and multi-step prediction of EGT,the prediction accuracy of the proposed model is improved to a large extent compared with other prediction models,which provides a certain reference for short-term APU performance trend prediction.

王坤;朱一扬

中国民航大学,天津 300300

辅助动力装置排气温度长短期记忆网络注意力机制分位数损失

APUEGTLSTMattention mechanismquantile-loss

《航空科学技术》 2024 (007)

40-48 / 9

国家自然科学基金(62173331) National Natural Science Foundation of China(62173331)

10.19452/j.issn1007-5453.2024.07.004

评论