| 注册
首页|期刊导航|航空科学技术|基于神经网络的激波抖振特征提取与始发预测

基于神经网络的激波抖振特征提取与始发预测

马启悦 高传强 孙健

航空科学技术2024,Vol.35Issue(7):49-55,7.
航空科学技术2024,Vol.35Issue(7):49-55,7.DOI:10.19452/j.issn1007-5453.2024.07.005

基于神经网络的激波抖振特征提取与始发预测

Shock Buffet Feature Extraction and Onset Prediction Based on Neural Network

马启悦 1高传强 1孙健2

作者信息

  • 1. 西北工业大学,陕西 西安 710072
  • 2. 北京宇航系统工程研究所,北京 100076
  • 折叠

摘要

Abstract

Shock buffet is a self-excited oscillation phenomenon caused by shock wave-boundary layer interference,which may lead to structural fatigue failure and even cause flight safety issues.The accurate prediction of shock buffet onset boundary is of great engineering significance for the design of transport aircraft.This paper establishes a Characteristics-integrated Fully connected Neural Network(CFNN)model that incorporates features from steady flow field,achieving accurate prediction of shock buffet onset angle of attack.Taking the NACA0012 airfoil as the research object,a Convolutional Neural Network(CNN)model extracts features from the steady flow field before and after the onset of the shock buffet.Subsequently,the extracted low dimensional features are used as hidden layers in the Fully connected Neural Network(FNN)model to predict the onset angle of attack of the shock buffet.In the generalization prediction of higher Mach numbers,the average relative error of the shock buffet onset angle of attack predicted by the CFNN model is reduced by more than 70%compared to the fully connected Neural Network(NN)model without incorporating features.The research results indicate that the low dimensional features extracted from the steady flow field can assist in predicting the onset angle of attack for unsteady shock buffet problems and improve the performance of neural network models.

关键词

激波抖振/定常流场/特征提取/边界预测/卷积神经网络

Key words

shock buffet/steady flow field/feature extraction/boundary prediction/CNN

分类

航空航天

引用本文复制引用

马启悦,高传强,孙健..基于神经网络的激波抖振特征提取与始发预测[J].航空科学技术,2024,35(7):49-55,7.

基金项目

航空科学基金(2019ZH053003) Aeronautical Science Foundation of China(2019ZH053003) (2019ZH053003)

航空科学技术

1007-5453

访问量0
|
下载量0
段落导航相关论文