基于重抽样加权的飞行器多源数据融合方法OA
Multi-Fidelity Data Fusion Method for Aircraft based on Resampling and Weighting
风洞试验方法和计算流体力学(CFD)数值模拟方法在飞行器的初步研制阶段能够对于飞行器的气动性能提供精准分析,其对于飞行器的气动外形优化与设计起到了重要的作用.而风洞试验与CFD方法不可避免地存在试验与计算成本较高等问题.为实现对于飞行器气动性能的低成本及高效分析,本文对风洞试验数据进行了机器学习方法的预测分析研究,提出了一种基于多模型结合方法的数据融合模式,其原理是通过重复抽样的方法多次获取精度略低的CFD数据与精度较高的风洞试验数据之间的映射关系,并通过基于均方误差的加权方法对于多映射关系进行结合从而输出最终的预测结果.结果表明,基于重抽样加权法的数据融合模式可以有效提升风洞试验数据预测的精准度与拟合度,辅助支撑风洞试验人员进行相关研究工作.
The wind tunnel test method and CFD simulation method can provide accurate analysis for the aerodynamic performance in the initial development stage of the aircraft,which plays an important role in the optimization of the aerodynamic shape of the aircraft.However,wind tunnel tests and CFD methods inevitably have the problem of high costs.In order to achieve low cost and efficient analysis on aircraft aerodynamic performance,this paper uses machine learning methods to analyze wind tunnel test data and aims to obtain the relationship between the CFD data with lower accuracy and the wind tunnel test data with higher accuracy through repeated sampling and combine the multiple relationship through the weighted method based on mean square error to obtain the final prediction.The results show that the data fusion mode based on repeated sampling and weighting method can effectively improve the accuracy and goodness of fit of wind tunnel test data prediction.The results demonstrate that the data fusion model based on resampling and weighting can effectively enhance the precision and reliability of wind tunnel test data prediction and assist wind tunnel test personnel to handle relevant research work.
崔榕峰;王祥云;刘哲;李鸿岩;郭承鹏
中国航空工业空气动力研究院 高速高雷诺数气动力航空科技重点实验室 辽宁 沈阳 110034
数据融合重抽样加权法风洞试验CFD机器学习
data fusionrepeated sampling and weighting methodwind tunnel testCFDmachine learning
《航空科学技术》 2024 (007)
111-119 / 9
航空科学基金(2022Z006026004,2023M071027001) Aeronautical Science Foundation of China(2022Z006026004,2023M071027001)
评论