| 注册
首页|期刊导航|红外技术|基于改进YOLOv5s的航拍红外图像目标识别方法

基于改进YOLOv5s的航拍红外图像目标识别方法

王悠 韩立祥 付贵

红外技术2024,Vol.46Issue(7):775-781,801,8.
红外技术2024,Vol.46Issue(7):775-781,801,8.

基于改进YOLOv5s的航拍红外图像目标识别方法

Aerial Infrared Image Target Recognition Method Based on Improved YOLOv5s

王悠 1韩立祥 1付贵2

作者信息

  • 1. 中国民用航空飞行学院,四川 广汉 618307
  • 2. 中国民用航空飞行学院,四川 广汉 618307||四川省通用航空器维修工程技术研究中心,四川 广汉 618307
  • 折叠

摘要

Abstract

To enhance the recognition efficiency of UAVs in dark conditions and reduce missed detections and delays in complex environments and road conditions,this study proposes an improved YOLOv5s-GN-CB infrared image recognition method.This method enhances the efficiency of UAV infrared aerial images for detecting vehicles,people,and other types of targets.The main improvements to YOLOv5s achieved in this study include the following three aspects:1)introducing the Ghost module into the YOLOv5s backbone network and incorporating NWD loss into Ghost;2)adding the coordinate attention(CA)mechanism;3)incorporating a weighted bidirectional feature pyramid network(BiFPN).The improved YOLOv5s-GN-CB detection model achieves an average accuracy of 95.1%(mAP@0.5)on the InfiRay infrared aerial photography man-vehicle detection dataset,with the FPS increased to 75.188 frames per second.Compared with the original YOLOv5 model,the average accuracy and FPS are improved by 4.2%and 12.02%,respectively.In the same scenario,the detection accuracy of UAV aerial photography infrared image target recognition has been significantly improved,and the delay rate has decreased.

关键词

红外目标检测/改进YOLOv5s/Ghost网络/注意力机制

Key words

infrared object detection/improved YOLOv5s/ghost network/attention mechanism

分类

计算机与自动化

引用本文复制引用

王悠,韩立祥,付贵..基于改进YOLOv5s的航拍红外图像目标识别方法[J].红外技术,2024,46(7):775-781,801,8.

基金项目

中央高校基本科研业务费基金项目(J2022-024) (J2022-024)

四川省通用航空器维修工程技术研究中心资助课题(GAMRC2021ZD01). (GAMRC2021ZD01)

红外技术

OA北大核心CSTPCD

1001-8891

访问量0
|
下载量0
段落导航相关论文