| 注册
首页|期刊导航|红外技术|全局-局部注意力引导的红外图像恢复算法

全局-局部注意力引导的红外图像恢复算法

刘晓朋 张涛

红外技术2024,Vol.46Issue(7):791-801,11.
红外技术2024,Vol.46Issue(7):791-801,11.

全局-局部注意力引导的红外图像恢复算法

Global-Local Attention-Guided Reconstruction Network for Infrared Image

刘晓朋 1张涛1

作者信息

  • 1. 江南大学 人工智能与计算机学院,江苏 无锡 214122||中国船舶科学研究中心,江苏 无锡 214122
  • 折叠

摘要

Abstract

To solve the problems of image blur smoothing,texture distortion,and excessively large parameters in real-world infrared-image recovery algorithms,a global-local attention-guided super-resolution reconstruction algorithm for infrared images is proposed.First,a cross-scale global-local feature fusion module utilizes multi-scale convolution and a transformer to fuse information at different scales in parallel and to guide the effective fusion of global and local information by learnable factors.Second,a novel domain randomization degradation model accommodates the degradation domain of real-world infrared images.Finally,a new hybrid loss based on weight learning and regularization penalty enhances the recovery capability of the network while speeding up convergence.Test results on classical degraded images and real-world infrared images show that,compared with existing methods,the images recovered by the proposed algorithm have more realistic textures and fewer boundary artifacts.Moreover,the total number of parameters can be reduced by up to 20%.

关键词

域随机化退化算法/跨尺度融合/红外图像超分辨率/生成对抗网络

Key words

domain randomization degradation algorithm/cross-scale fusion/infrared image super-resolution/generative adversarial network

分类

计算机与自动化

引用本文复制引用

刘晓朋,张涛..全局-局部注意力引导的红外图像恢复算法[J].红外技术,2024,46(7):791-801,11.

基金项目

船舶总体性能创新研究开放基金项目(14422102). (14422102)

红外技术

OA北大核心CSTPCD

1001-8891

访问量0
|
下载量0
段落导航相关论文