| 注册
首页|期刊导航|电力系统保护与控制|一种时频尺度下的多元短期电力负荷组合预测方法

一种时频尺度下的多元短期电力负荷组合预测方法

李楠 姜涛 隋想 胡禹先

电力系统保护与控制2024,Vol.52Issue(13):47-58,12.
电力系统保护与控制2024,Vol.52Issue(13):47-58,12.DOI:10.19783/j.cnki.pspc.231284

一种时频尺度下的多元短期电力负荷组合预测方法

A multi-component short-term power load combination forecasting method on a time-frequency scale

李楠 1姜涛 2隋想 3胡禹先4

作者信息

  • 1. 现代电力系统仿真控制与绿色电能新技术教育部重点实验室(东北电力大学),吉林吉林 132012||东北电力大学电气工程学院,吉林吉林 132012
  • 2. 东北电力大学电气工程学院,吉林吉林 132012
  • 3. 南京南瑞继保电气有限公司,江苏南京 210000
  • 4. 国家电网吉林省电力有限公司白城供电公司,吉林白城 137000
  • 折叠

摘要

Abstract

The increase of stochastic factors leads to increasing complexity of power load data components.This makes short-term load forecasting progressively more difficult.Thus a combined forecasting model fusing a temporal convolutional network with multiple linear regression on the time-frequency scale is proposed.The complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)is used to decompose the load data into multiple intrinsic mode functions with different frequency features in the time-frequency domain,and the intrinsic mode functions are clustered into random and trend terms under the fuzzy entropy criterion.The Pearson correlation coefficient is used to pick out features that are highly relevant to the power load from many influential factors.The analysis of a small time scale makes it easier to determine local detailed features,and the fine granularity feature set of the random and trend terms are constructed respectively.The temporal convolutional network(TCN)with strong nonlinear processing ability is used to predict the random term,and the multiple linear regression(MLR)with simple structure and good linear fitting effect is used to predict the trend term.The final predicted value is obtained by superposing and reconstructing both predicted results.Experimental results on two datasets including for Singapore and Belgium prove that the proposed model has high prediction accuracy,good generalizability and robustness.

关键词

短期电力负荷预测/时频尺度/分解算法/模糊熵/模型融合

Key words

short-term power load forecasting/time-frequency scale/decomposition algorithm/fuzzy entropy/model fusion

引用本文复制引用

李楠,姜涛,隋想,胡禹先..一种时频尺度下的多元短期电力负荷组合预测方法[J].电力系统保护与控制,2024,52(13):47-58,12.

基金项目

This work is supported by the National Natural Science Foundation of China(No.61973072). 国家自然科学基金项目资助(61973072) (No.61973072)

电力系统保护与控制

OA北大核心CSTPCD

1674-3415

访问量0
|
下载量0
段落导航相关论文