| 注册
首页|期刊导航|电力系统保护与控制|基于ISSA-XGBoost的电能质量扰动识别方法研究

基于ISSA-XGBoost的电能质量扰动识别方法研究

商立群 李朝彪 邓力文 郝天奇 刘晗

电力系统保护与控制2024,Vol.52Issue(13):115-124,10.
电力系统保护与控制2024,Vol.52Issue(13):115-124,10.DOI:10.19783/j.cnki.pspc.231283

基于ISSA-XGBoost的电能质量扰动识别方法研究

A power quality disturbance identification method based on ISSA-XGBoost

商立群 1李朝彪 1邓力文 1郝天奇 1刘晗1

作者信息

  • 1. 西安科技大学电气与控制工程学院,陕西西安 710054
  • 折叠

摘要

Abstract

To solve the problem of redundancy and low recognition accuracy in traditional power quality disturbance recognition,this paper proposes a method based on an improved sparrow search algorithm(ISSA)to optimize feature selection and eXtreme gradient boosting(XGBoost).First,the power quality disturbance signal is transformed by S-transform,and 61 kinds of power quality characteristics are extracted.Then ISSA selects the optimal feature subset and the optimal parameters in XGBoost at the same time to eliminate redundant features and improve recognition accuracy.Finally,the power quality disturbance is identified according to the optimized feature subset and XGBoost.The simulation results show that the method proposed can effectively select the optimal feature subset,and efficiently identify 19 kinds of power quality disturbance signals in a noisy environment,and has high recognition accuracy.

关键词

电能质量/扰动识别/XGBoost/麻雀搜索算法

Key words

power quality/disturbance identification/XGBoost/sparrow search algorithm

引用本文复制引用

商立群,李朝彪,邓力文,郝天奇,刘晗..基于ISSA-XGBoost的电能质量扰动识别方法研究[J].电力系统保护与控制,2024,52(13):115-124,10.

基金项目

This work is supported by the Natural Science Basic Research Plan of Shaanxi Province(No.2021JM393). 陕西省自然科学基础研究计划项目资助(2021JM393) (No.2021JM393)

电力系统保护与控制

OA北大核心CSTPCD

1674-3415

访问量7
|
下载量0
段落导航相关论文