|国家科技期刊平台
首页|期刊导航|电力系统保护与控制|基于多策略改进金豺算法优化LSTM的短期电力负荷预测

基于多策略改进金豺算法优化LSTM的短期电力负荷预测OA北大核心CSTPCD

Short-term power load forecasting based on multi-strategy improved golden jackal algorithm-optimized LSTM

中文摘要英文摘要

针对长短期记忆(long short term memory,LSTM)神经网络存在短期负荷预测精度低和稳定性差的问题,提出一种基于多策略改进金豺(improved golden jackal optimization,IGJO)算法优化LSTM的短期电力负荷预测模型.首先融合凸透镜成像反向学习策略,探索更好的初始解位置;引入Sigmoid函数改变逃逸能量,平衡探索和开发阶段;融合鲸鱼优化算法的螺旋包围机制,增强探索能力,提高收敛精度.然后,引入LSTM神经网络,利用IGJO算法优化LSTM的超参数,并建立IGJO-LSTM短期电力负荷预测模型.最后,使用河南某地区的实际电力负荷数据验证 IGJO-LSTM 短期负荷预测模型.实验结果表明,所提预测模型在工作日和周末不同时刻的电力系统短期负荷预测结果与实际负荷较接近.相比于传统预测方法,所提预测模型具有更高的精确度和稳定性,并具有一定的实际应用潜力.

There are problems of low accuracy and poor stability in short-term load forecasting using long short-term memory(LSTM)neural networks.Thus this paper proposes an improved golden jackal optimization(IGJO)algorithm to optimize the LSTM model.First,it integrates a convex lens reverse learning strategy for better starting positions.It introduces the sigmoid function to change the escape energy and balance exploration and development stage.It fuses whale optimization algorithm's spiral enclosure to improve exploration capability and convergence accuracy.Then,it introduces the LSTM neural network,and uses the IGJO algorithm to optimize its hyperparameters and to establish the IGJO-LSTM short-term electricity load forecasting model.Finally,the IGJO-LSTM short-term load forecasting model is validated using actual power load data from a region in Henan province.The experimental results show that the short-term load prediction results of the IGJO-LSTM model at different times on weekdays and weekends are closer to the actual load.Compared to traditional methods,it demonstrates higher accuracy and stability,indicating practical application potential.

王延峰;曹育晗;孙军伟

郑州轻工业大学,河南省信息化电器重点实验室,河南 郑州 450002

电力负荷预测长短时记忆网络凸透镜成像非线性逃逸能量螺旋包围机制

electricity load forecastinglong-short-term memory networksimaging of a convex lensnonlinear escape energyspiral envelope mechanism

《电力系统保护与控制》 2024 (014)

95-102 / 8

This work is supported by the National Natural Science Foundation of China(No.62272424 and No.62276239).国家自然科学基金项目资助(62272424,62276239);国网河南省电力公司科技项目资助(5217S0240001)

10.19783/j.cnki.pspc.231431

评论