| 注册
首页|期刊导航|吉林大学学报(理学版)|基于3D先验特征的人脸超分辨率重建算法

基于3D先验特征的人脸超分辨率重建算法

姚汉群 刘广文 王超 杨依宁 才华 付强

吉林大学学报(理学版)2024,Vol.62Issue(4):895-904,10.
吉林大学学报(理学版)2024,Vol.62Issue(4):895-904,10.DOI:10.13413/j.cnki.jdxblxb.2023204

基于3D先验特征的人脸超分辨率重建算法

Facial Super-resolution Reconstruction Algorithm Based on 3D Prior Features

姚汉群 1刘广文 1王超 2杨依宁 3才华 1付强4

作者信息

  • 1. 长春理工大学电子信息工程学院,长春 130022
  • 2. 长春理工大学空间光电技术国家与地方联合工程研究中心,长春 130022
  • 3. 电磁空间安全全国重点实验室,天津 300308
  • 4. 长春理工大学空间光电技术研究所,长春 130022
  • 折叠

摘要

Abstract

In order to effectively solve the problem of facial super-resolution feature recovery in complex environments,we proposed a novel facial super-resolution network.By integrating 3D rendering prior knowledge and a dual attention mechanism,the network enhanced the understanding of the facial spatial position and overall structure while improving the ability to recover detailed information.The experimental results on the CelebAMask-HQ dataset show that the proposed algorithm achieves peak signal-to-noise ratio and structural similarity of 28.76 dB and 0.827 5 for downsampled faces magnified by 4 times,and 26.29 dB and 0.754 9 for downsampled faces magnified by 8 times.Compared with the similar SAM3D algorithm,the proposed algorithm improves the peak signal-to-noise ratio and structural similarity by 4.09 and 1.93 percentage points when dealing with 4 times downsampling,and by 2.02 and 4.54 percentage points when dealing with 8 times downsampling,respectively.This proves the superiority of the proposed algorithm and also indicates that facial super-resolution recovery can achieve more realistic and clear visual effects in practical applications.

关键词

机器视觉/人脸超分辨率/3D先验/注意力机制

Key words

machine vision/facial super-resolution/3D prior/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

姚汉群,刘广文,王超,杨依宁,才华,付强..基于3D先验特征的人脸超分辨率重建算法[J].吉林大学学报(理学版),2024,62(4):895-904,10.

基金项目

国家自然科学基金重大项目(批准号:61890963)和吉林省科技发展计划项目(批准号:20210204099YY). (批准号:61890963)

吉林大学学报(理学版)

OA北大核心CSTPCD

1671-5489

访问量0
|
下载量0
段落导航相关论文