基于CNN-SVM和集成学习的固井质量评价方法OA北大核心CSTPCD
Cementing Quality Evaluation Method Based on CNN-SVM and Integrated Learning
为解决固井质量评价问题,提出一种基于CNN-SVM和集成学习的固井质量评价方法.首先,针对DenseNet模型采取缩减网络层数、增加多尺度卷积层、嵌入卷积注意力模块等改进措施,以提高模型的训练速度和评价准确率;其次,利用InceptionV 1模块和扩张卷积构建一个模型复杂度相对较小且评价准确率相对较高的Inception-DCNN模型;再次,优选3个经典的卷积神经网络模型(ResNet50,MobileNetV3-Small,GhostNet),利用卷积神经网络强大的特征提取能力及支持向量机的结构风险最小化能力,将上述模型分别与支持向量机组合成新的CNN-SVM模型,以提升模型的泛化能力;最后,采用Bagging方式将5个新的CNN-SVM模型集成为一个强学习器,从而提升评价结果的准确度,增强模型的抗干扰能力.实验结果表明,该方法对测试集中的3类评价样本的准确率为97.69%,与单个模型和其他方法相比提升了 1~9个百分点,验证了采用基于CNN-SVM和集成学习的方法进行固井质量评价是切实可行的.
In order to solve the problem of cementing quality evaluation,we proposed a cementing quality evaluation method based on CNN-SVM and integrated learning.Firstly,the method adopted improvement measures such as reducing the number of network layers,adding multi-scale convolutional layers,and embedding convolutional attention modules for the DenseNet model to improve the training speed and evaluation accuracy of the model.Secondly,the InceptionV1 module and dilated convolution were used to construct an Inception-DCNN model with relatively small model complexity and relatively high evaluation accuracy.Thirdly,three classic convolutional neural network models(ResNet50,MobileNetV3-Small and GhostNet)were selected.By utilizing the powerful feature extraction capabilities of convolutional neural networks and the structural risk minimization capabilities of support vector machines,the above models were combined with a support vector machine to synthesize a new CNN-SVM model to improve the generalization ability of the model.Finally,the Bagging method was used to integrate the five new CNN-SVM models into a strong learner,thereby improving the accuracy of the evaluation results and enhancing the anti-interference ability of the model.The experimental results show that the accuracy of the method for 3 types of evaluation samples in the test set is 97.69%,which is 1-9 percentage points higher than that of a single model and other methods,thus verifying the feasibility of using methods based on CNN-SVM and ensemble learning for cementing quality evaluation.
肖红;钱祎鸣
东北石油大学计算机与信息技术学院,黑龙江大庆 163318
计算机与自动化
固井质量评价扇区水泥胶结测井集成学习卷积神经网络支持向量机
cementing quality evaluationsector cement cement loggingintegrated learningconvolutional neural networksupport vector machine
《吉林大学学报(理学版)》 2024 (004)
960-970 / 11
黑龙江省自然科学基金(批准号:LH2019F004).
评论