| 注册
首页|期刊导航|计算机工程与应用|用于方面级情感分析的多信息增强图卷积网络

用于方面级情感分析的多信息增强图卷积网络

杨春霞 闫晗 吴亚雷 黄昱锟

计算机工程与应用2024,Vol.60Issue(14):144-151,8.
计算机工程与应用2024,Vol.60Issue(14):144-151,8.DOI:10.3778/j.issn.1002-8331.2305-0376

用于方面级情感分析的多信息增强图卷积网络

Multi-Information Enhanced Graph Convolutional Network For Aspect Sentiment Analysis

杨春霞 1闫晗 1吴亚雷 1黄昱锟1

作者信息

  • 1. 南京信息工程大学自动化学院,南京 210044||江苏省大数据分析技术重点实验室,南京 210044||江苏省大气环境与装备技术协同创新中心,南京 210044
  • 折叠

摘要

Abstract

Aspect level sentiment analysis aims to predict the emotional polarity of specific aspects of a sentence.However,there is still the problem of insufficient use of semantic information in the current stage of research,on the one hand,most of the existing work focuses on learning the dependency information between contextual words and aspect words,and does not make full use of the semantic information of sentences;on the other hand,the existing research does not focus on the syntax construction of dependency trees,so it does not make full use of the grammatical structure information to supplement the semantic information.In view of the above problems,this paper proposes a multi-information augmented graph convolutional neural network(MIE-GCN)model.It mainly includes two parts:one is to form a multi-information fusion layer through aspect perception attention,self-attention and external common sense to make full use of semantic information;the second is to construct a grammatical mask matrix of sentences according to the different grammatical distances between words,and supplement semantic information by obtaining comprehensive grammatical structure infor-mation.Finally,the graph convolutional neural network is used to enhance the node representation.The experimental results on the benchmark dataset show that the proposed model has a certain improvement over the comparison model.

关键词

方面级情感分析/外部常识/方面感知注意力/语法掩码矩阵

Key words

aspect-based sentiment analysis/external common sense/aspect perception attention/syntactic mask matrix

分类

信息技术与安全科学

引用本文复制引用

杨春霞,闫晗,吴亚雷,黄昱锟..用于方面级情感分析的多信息增强图卷积网络[J].计算机工程与应用,2024,60(14):144-151,8.

基金项目

国家自然科学基金(61273229,51705260). (61273229,51705260)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文