| 注册
首页|期刊导航|计算机工程与应用|基于改进YOLOv8的轻量化道路病害检测方法

基于改进YOLOv8的轻量化道路病害检测方法

胥铁峰 黄河 张红民 牛晓富

计算机工程与应用2024,Vol.60Issue(14):175-186,12.
计算机工程与应用2024,Vol.60Issue(14):175-186,12.DOI:10.3778/j.issn.1002-8331.2402-0243

基于改进YOLOv8的轻量化道路病害检测方法

Lightweight Road Damage Detection Method Based on Improved YOLOv8

胥铁峰 1黄河 2张红民 1牛晓富1

作者信息

  • 1. 重庆理工大学 电气与电子工程学院,重庆 400054
  • 2. 重庆理工大学 电气与电子工程学院,重庆 400054||招商局重庆交通科研设计院有限公司,重庆 400000
  • 折叠

摘要

Abstract

Aiming at the problems of large memory space occupation,high computational complexity,and difficult to meet the real-time target detection requirements of the road damage detection model in complex scenes,a lightweight road damage detection model DGE-YOLO-P is proposed for the complex natural scenes.Firstly,the C2f fusion deformable convolutional design C2fDCNv3 module in the network is enhanced to enhance the modelling capability of object defor-mation and the input feature information is dimensionality reduced to effectively reduce the number of parameters and the computational complexity.The input feature information is dimensionality reduced to effectively reduce the number of model parameters and computational complexity.Then,the GS-Decoupled head detection module is designed to reduce the parameters of the detection head while realising the effective aggregation of global information.At the same time,the E-Slide Loss weight function is designed to assign higher weights to the difficult samples,fully learn the difficult sample data in road damage,and further improve the model detection accuracy.Finally,channel pruning is used to reduce the redundant channels of the model,which effectively compresses the model volume and improves the detection speed.The experimental results show that the mAP of the DGE-YOLO-P model is increased by 2.4 percentage points compared with the YOLOv8n model,while the number of model parameters,computational volume and model size are reduced by 58.1%,66.7%and 55.5%,respectively.The detection speed FPS is increased from 34 frame/s to 51 frame/s.

关键词

道路病害检测/复杂场景/YOLOv8n/轻量化/模型剪枝

Key words

road damage detection/complex scene/YOLOv8n/lightweight/model pruning

分类

信息技术与安全科学

引用本文复制引用

胥铁峰,黄河,张红民,牛晓富..基于改进YOLOv8的轻量化道路病害检测方法[J].计算机工程与应用,2024,60(14):175-186,12.

基金项目

国家重点研发计划(2022YFC3002603) (2022YFC3002603)

国家自然科学基金(61901068) (61901068)

重庆市自然科学基金面上项目(cstc2021 jcyj-msxmX0525). (cstc2021 jcyj-msxmX0525)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文