| 注册
首页|期刊导航|计算机工程与应用|改进YOLOv8的汽车表面伤损实例分割模型

改进YOLOv8的汽车表面伤损实例分割模型

谭旭 赵骥

计算机工程与应用2024,Vol.60Issue(14):197-208,12.
计算机工程与应用2024,Vol.60Issue(14):197-208,12.DOI:10.3778/j.issn.1002-8331.2403-0087

改进YOLOv8的汽车表面伤损实例分割模型

Enhancing YOLOv8 for Improved Instance Segmentation of Automotive Surface Damage

谭旭 1赵骥1

作者信息

  • 1. 辽宁科技大学计算机与软件工程学院,辽宁鞍山 114051
  • 折叠

摘要

Abstract

To address the shortcomings of manual damage assessment and issues with conventional vehicle damage detection models in the context of intelligent vehicles,it proposes EIS-YOLO,an enhanced instance segmentation model based on YOLOv8.It introduces CRDB,a novel multi-scale feature fusion and channel reduction module that replaces C2f,reducing parameters by 20.15%while improving fusion efficiency.Additionally,HRFPN structure maintains high-resolution branches,facilitates finer detail and semantic exchange,and includes AFF and BiAM attention modules for deeper feature integration.An efficient E-FPN and an extra output head are utilized to better identify small damages and edges.Evaluated on CarDD dataset,CRDB improves multi-task accuracy by 2 percentage points,and the integrated EIS-YOLO model with HRFPN sees a 4.4 percentage points boost in PB and 6.6 percentage points in PM over the baseline,all while maintaining a lighter weight and lower computational complexity.

关键词

汽车伤损检测/YOLO-Seg/注意力机制/多尺度特征融合/CarDD汽车伤损数据

Key words

vehicle damage detection/YOLO-Seg/attention mechanism/multi-scale feature fusion/CarDD vehicle damage data

分类

信息技术与安全科学

引用本文复制引用

谭旭,赵骥..改进YOLOv8的汽车表面伤损实例分割模型[J].计算机工程与应用,2024,60(14):197-208,12.

基金项目

辽宁自然科学基金(2020-MS-281) (2020-MS-281)

辽宁省教育厅科研项目(LJKZZ2022043). (LJKZZ2022043)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文