| 注册
首页|期刊导航|计算机工程与应用|双分支GAN与注意力机制的火灾隐患检测算法

双分支GAN与注意力机制的火灾隐患检测算法

李牧 何金诚 杨恒

计算机工程与应用2024,Vol.60Issue(14):228-239,12.
计算机工程与应用2024,Vol.60Issue(14):228-239,12.DOI:10.3778/j.issn.1002-8331.2304-0288

双分支GAN与注意力机制的火灾隐患检测算法

Fire Hazard Detection Algorithm with Dual-Branch GAN and Attention Mechanism

李牧 1何金诚 2杨恒2

作者信息

  • 1. 西安理工大学自动化与信息工程学院,西安 710048||陕西省智能协同网络军民共建重点实验室,西安 710048
  • 2. 西安理工大学自动化与信息工程学院,西安 710048
  • 折叠

摘要

Abstract

Aiming at the problems of traditional fire alarm can not be warned before the occurrence of fire,the effect is not good in extreme weather such as night,and it is limited by complex environment,a fire alarm algorithm based on infrared and visible light images fusion is proposed.A two-branch attention structure is designed and proposed in a genera-tive adversarial network(GAN).One branch extracts more robust feature information through the dense residual network,and the other branch makes up for the lack of spatial information through the efficient coordinate channel attention group(ECCAG)to maximize the acquisition of more high-frequency detail features,and designs and proposes a regulation loss as a loss function,and obtains the fusion image by improving the GAN algorithm.Finally,according to the proposed fire warning algorithm,whether there is a fire hazard is judged.The experimental results show that,the average accuracy of object detection in the fusion dataset obtained by the improved GAN algorithm is 96.19%,which is improved by 11.09 percentage points and 6.2 percentage points compared with the infrared dataset and the original GAN algorithm dataset,respectively,and the accuracy of flame hazard detection on the TNO and LLVIP datasets of the public dataset is 97.45%.The results show that the fire warning algorithm can warn in time when no fire occurs,and can obtain significant detec-tion effects for different scenarios.

关键词

生成对抗网络/图像融合/早期火灾预警/双分支结构/注意力机制

Key words

generative adversarial network/image fusion/early fire warning/two-branched structure/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

李牧,何金诚,杨恒..双分支GAN与注意力机制的火灾隐患检测算法[J].计算机工程与应用,2024,60(14):228-239,12.

基金项目

陕西省教育厅科研计划项目(18JK0341) (18JK0341)

西安市科技计划项目(2020KJRC0083). (2020KJRC0083)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量2
|
下载量0
段落导航相关论文