| 注册
首页|期刊导航|计算机工程与应用|适用于鱼眼图像的改进YOLOv7目标检测算法

适用于鱼眼图像的改进YOLOv7目标检测算法

吴兆东 徐成 刘宏哲 付莹 蹇木伟

计算机工程与应用2024,Vol.60Issue(14):250-256,7.
计算机工程与应用2024,Vol.60Issue(14):250-256,7.DOI:10.3778/j.issn.1002-8331.2305-0442

适用于鱼眼图像的改进YOLOv7目标检测算法

Improved YOLOv7 Object Detection Algorithm for Fisheye Images

吴兆东 1徐成 1刘宏哲 1付莹 2蹇木伟3

作者信息

  • 1. 北京联合大学北京市信息服务工程重点实验室,北京 100101
  • 2. 北京理工大学 计算机学院,北京 100081
  • 3. 山东财经大学计算机科学与技术学院,济南 250014
  • 折叠

摘要

Abstract

Images taken by fisheye cameras are characterized by wide field of view,geometric distortion and large scale variance,which bring great challenges to object detectors based on general convolutional networks.Existing object detec-tion algorithms can be further improved with respect to network structure design,feature learning to be applicable to the distorted object detection task on fisheye images.To mitigate the effect of radial distortion on fisheye images,a multi-head attention module with multi-branch stacking structure is used in the YOLOv7 backbone to capture global contextual information.Meanwhile,a simple and efficient layer aggregation structure combining deformable convolutions is used on the Neck side of YOLOv7 to achieve effective multi-scale feature fusion.Experiments are conducted on the public com-prehensive fisheye image dataset VOC_360,and the results show that the improved YOLOv7 fisheye image object detector effectively achieves detection accuracy of 84.3%and 70.4%for mAP50 and mAP50:95,respectively,which is 3.1 percentage points and 6.4 percentage points higher than the baseline model YOLOv7,respectively.

关键词

目标检测/鱼眼图像/多头注意力/可变形卷积/YOLO算法

Key words

object detection/fisheye image/multi-head attention/deformable convolution/YOLO algorithm

分类

信息技术与安全科学

引用本文复制引用

吴兆东,徐成,刘宏哲,付莹,蹇木伟..适用于鱼眼图像的改进YOLOv7目标检测算法[J].计算机工程与应用,2024,60(14):250-256,7.

基金项目

国家自然科学基金(62171042,62102033,62006020) (62171042,62102033,62006020)

北京市重点科技项目(KZ202211417048) (KZ202211417048)

北京市属高等学校高水平科研创新团队建设支持计划项目(BPHR20220121) (BPHR20220121)

北京市自然科学基金(4232026) (4232026)

协同创新中心(CYXC2203). (CYXC2203)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文