| 注册
首页|期刊导航|计算机工程与应用|零小样本旋转机械故障诊断综述

零小样本旋转机械故障诊断综述

刘俊孚 岑健 黄汉坤 刘溪 赵必创 司伟伟

计算机工程与应用2024,Vol.60Issue(15):42-54,13.
计算机工程与应用2024,Vol.60Issue(15):42-54,13.DOI:10.3778/j.issn.1002-8331.2401-0112

零小样本旋转机械故障诊断综述

Review on Zero or Few Sample Rotating Machinery Fault Diagnosis

刘俊孚 1岑健 1黄汉坤 1刘溪 1赵必创 1司伟伟1

作者信息

  • 1. 广东技术师范大学 自动化学院,广州 510665||广州市智慧建筑设备信息集成与控制重点实验室,广州 510665
  • 折叠

摘要

Abstract

With the advent of the data era,data-driven fault diagnosis methods have demonstrated excellent performance.Since the application of deep learning in fault diagnosis,supervised learning has made significant advancements.However,when samples are scarce or missing,supervised learning lacks the necessary training conditions.This paper proposes the zero-shot and small-sample problem,and analyzes its current status in the field of rotating machinery fault diagnosis.It reviews the development process,mainstream models,and current research hotspots of zero-shot rotating machinery fault diagnosis.Existing research achievements are summarized from two aspects:zero-shot problems and small-sample prob-lems,and their applications in zero-shot and small-sample problems are analyzed.Finally,the paper discusses the future trends in zero-shot methods for rotating machinery fault diagnosis.

关键词

零样本/小样本/故障诊断/数据扩充

Key words

zero samples/few samples/fault diagnosis/data expansion

分类

矿业与冶金

引用本文复制引用

刘俊孚,岑健,黄汉坤,刘溪,赵必创,司伟伟..零小样本旋转机械故障诊断综述[J].计算机工程与应用,2024,60(15):42-54,13.

基金项目

广东省普通高校创新团队项目(2020KCXTD017) (2020KCXTD017)

广州市科技重点研发计划(202206010022). (202206010022)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文