零小样本旋转机械故障诊断综述OA北大核心CSTPCD
Review on Zero or Few Sample Rotating Machinery Fault Diagnosis
随着数据时代的到来,基于数据驱动的故障诊断方法表现出了优秀的性能.深度学习应用于故障诊断以来,监督学习取得了巨大的发展,但当样本稀少或者缺失时,监督学习将缺乏训练的必要条件.提出了零小样本问题并分析了其在旋转机械故障诊断领域的现状;回顾了零小样本旋转机械故障诊断的发展历程、主流模型和当前研究热点;从零样本问题和小样本问题两个方面总结了现有研究成果并分析现有方法在零小样本问题中的应用.最后,展望了旋转机械故障诊断的零小样本方法的发展趋势.
With the advent of the data era,data-driven fault diagnosis methods have demonstrated excellent performance.Since the application of deep learning in fault diagnosis,supervised learning has made significant advancements.However,when samples are scarce or missing,supervised learning lacks the necessary training conditions.This paper proposes the zero-shot and small-sample problem,and analyzes its current status in the field of rotating machinery fault diagnosis.It reviews the development process,mainstream models,and current research hotspots of zero-shot rotating machinery fault diagnosis.Existing research achievements are summarized from two aspects:zero-shot problems and small-sample prob-lems,and their applications in zero-shot and small-sample problems are analyzed.Finally,the paper discusses the future trends in zero-shot methods for rotating machinery fault diagnosis.
刘俊孚;岑健;黄汉坤;刘溪;赵必创;司伟伟
广东技术师范大学 自动化学院,广州 510665||广州市智慧建筑设备信息集成与控制重点实验室,广州 510665
金属材料
零样本小样本故障诊断数据扩充
zero samplesfew samplesfault diagnosisdata expansion
《计算机工程与应用》 2024 (015)
42-54 / 13
广东省普通高校创新团队项目(2020KCXTD017);广州市科技重点研发计划(202206010022).
评论