| 注册
首页|期刊导航|计算机工程与应用|融合GAT与头尾标签的多标签文本分类模型

融合GAT与头尾标签的多标签文本分类模型

杨春霞 黄昱锟 闫晗 吴亚雷

计算机工程与应用2024,Vol.60Issue(15):150-160,11.
计算机工程与应用2024,Vol.60Issue(15):150-160,11.DOI:10.3778/j.issn.1002-8331.2305-0368

融合GAT与头尾标签的多标签文本分类模型

Multi-Label Text Classification Model Integrating GAT and Head-Tail Label

杨春霞 1黄昱锟 1闫晗 1吴亚雷1

作者信息

  • 1. 南京信息工程大学 自动化学院,南京 210044||江苏省大数据分析技术重点实验室,南京 210044||江苏省大气环境与装备技术协同创新中心,南京 210044
  • 折叠

摘要

Abstract

The existing multi-label text classification based on neural networks has two main shortcomings:firstly,there is a long tailed distribution of label text frequency in the existing data,and secondly,the correlation between global labels is rarely obtained from the graph structure.To address the above issues,this paper proposes a multi-label text classification model(GATTN)that integrates GAT and head and tail label classifiers.This model utilizes Bi-LSTM with attention mech-anism to obtain the feature vector representation of the text.Simultaneously,the correlation between different labels is transformed into an edge weighted graph containing global information,and a multi-layer graph attention network is used to learn the correlation between head labels.Then it interacts with the text context semantic information by dot product,and gets the feature representation with text semantics and header tag information to improve the generalization ability of the model.The experimental results on two publicly available English datasets,AAPD,RCV1-V2 and EUR-Lex,demon-strate that this model outperforms other baseline models in multi-label text classification for long tailed distribution of data.

关键词

多标签文本分类/图注意力网络/头尾标签/多样本学习

Key words

multi-label text classification/graph attention networks(GAT)/head and tail label/many-shot learning

分类

信息技术与安全科学

引用本文复制引用

杨春霞,黄昱锟,闫晗,吴亚雷..融合GAT与头尾标签的多标签文本分类模型[J].计算机工程与应用,2024,60(15):150-160,11.

基金项目

国家自然科学基金(61273229) (61273229)

江苏省青蓝工程资助项目. ()

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文