|国家科技期刊平台
首页|期刊导航|计算机科学与探索|多智能体强化学习算法研究综述

多智能体强化学习算法研究综述OA北大核心CSTPCD

Review of Research on Multi-agent Reinforcement Learning Algorithms

中文摘要英文摘要

近年来,多智能体强化学习算法技术已广泛应用于人工智能领域.系统性地分析了多智能体强化学习算法,审视了其在多智能体系统中的应用与进展,并深入调研了相关研究成果.介绍了多智能体强化学习的研究背景和发展历程,并总结了已有的相关研究成果;简要回顾了传统强化学习算法在不同任务下的应用情况;重点强调多智能体强化学习算法分类,并根据三种主要的任务类型(路径规划、追逃博弈、任务分配)对其在多智能体系统中的应用、挑战以及解决方案进行了细致的梳理与分析;调研了多智能体领域中现有的算法训练环境,总结了深度学习对多智能体强化学习算法的改进作用,提出该领域所面临的挑战并展望了未来的研究方向.

In recent years,the technique of multi-agent reinforcement learning algorithm has been widely used in the field of artificial intelligence.This paper systematically analyses the multi-agent reinforcement learning algo-rithm,examines its application and progress in multi-agent systems,and explores the relevant research results in depth.Firstly,it introduces the research background and development history of multi-agent reinforcement learning and summarizes the existing relevant research results.Secondly,it briefly reviews the application of traditional rein-forcement learning algorithms under different tasks.Then,it highlights the classification of multi-agent reinforce-ment learning algorithms and their application in multi-agent systems according to the three main types of tasks(path planning,pursuit and escape game,task allocation),challenges,and solutions.Finally,it explores the existing algorithm training environments in the field of multi-agents,summarizes the improvement of deep learning on multi-agent reinforcement learning algorithms,proposes challenges and looks forward to future research directions in this field.

李明阳;许可儿;宋志强;夏庆锋;周鹏

南京信息工程大学 自动化学院,南京 210044无锡学院 自动化学院,江苏 无锡 214105

计算机与自动化

智能体强化学习多智能体强化学习多智能体系统

agentreinforcement learningmulti-agent reinforcement learningmulti-agent systems

《计算机科学与探索》 2024 (008)

1979-1997 / 19

江苏省产学研合作项目(BY2021238);无锡学院人才启动经费项目(2021r001). This work was supported by the Industry University Research Co-operation Project of Jiangsu Province(BY2021238),and the Talent Start-up Funding Project of Wuxi University(2021r001).

10.3778/j.issn.1673-9418.2401020

评论