| 注册
首页|期刊导航|计算机科学与探索|前缀调优的少样本命名实体识别

前缀调优的少样本命名实体识别

吕海啸 李益红 周晓谊

计算机科学与探索2024,Vol.18Issue(8):2180-2189,10.
计算机科学与探索2024,Vol.18Issue(8):2180-2189,10.DOI:10.3778/j.issn.1673-9418.2307060

前缀调优的少样本命名实体识别

Few-Shot Named Entity Recognition with Prefix-Tuning

吕海啸 1李益红 1周晓谊1

作者信息

  • 1. 海南大学 网络空间安全学院,海口 570228
  • 折叠

摘要

Abstract

The commonly adopted approach for few-shot named entity recognition(NER)typically involves the use of similarity-based metrics.In order to fully leverage knowledge transfer within the model parameters,this paper proposes a prefix-tuning method for few-shot NER(P-NER).This involves placing the input text's feature vectors into an embedding module for feature extraction.The vector parameters of prefix prompts are concatenated to the front end of the encoding layer model,with the encoding layer model parameters being fixed.The results obtained from the encoding layer are decoded using a cross-entropy model.For each training sample,two sub-models are sampled,and regularization of the model prediction is achieved by minimizing the relative entropy between the two sub-models.The model's consistency with actual labels is assessed by validating the output probability and the probability of true labels for each word,ultimately yielding the classification results.Experimental results demon-strate that on the CoNLL2003 dataset,this method achieves an average F1 score of 84.92%for in-domain few-shot entity recognition.In the cross-domain few-shot entity recognition tasks,it outperforms other baseline methods on three datasets:MIT Movie,MIT Restaurant and ATIS.Thus,this method significantly enhances the effectiveness of few-shot named entity recognition with a mere 2.9%adjustment to the parameters of previous fine-tuning methods.

关键词

命名实体识别(NER)/少样本学习/提示学习

Key words

named entity recognition(NER)/few-shot learning/prompt learning

分类

信息技术与安全科学

引用本文复制引用

吕海啸,李益红,周晓谊..前缀调优的少样本命名实体识别[J].计算机科学与探索,2024,18(8):2180-2189,10.

基金项目

海南省重点计划项目(ZDYF2022GXJS224) (ZDYF2022GXJS224)

国家自然科学基金(62163010,62162021,62362025). This work was supported by the Key Plan Project of Hainan Province(ZDYF2022GXJS224),and the National Natural Science Founda-tion of China(62163010,62162021,62362025). (62163010,62162021,62362025)

计算机科学与探索

OA北大核心CSTPCD

1673-9418

访问量0
|
下载量0
段落导航相关论文