| 注册
首页|期刊导航|计算机与数字工程|基于优化G-P算法求解关联维数

基于优化G-P算法求解关联维数

方若望 何越磊 李再帏 路宏遥 赵彦旭

计算机与数字工程2024,Vol.52Issue(5):1270-1274,5.
计算机与数字工程2024,Vol.52Issue(5):1270-1274,5.DOI:10.3969/j.issn.1672-9722.2024.05.002

基于优化G-P算法求解关联维数

Calculation of Correlation Dimension Based on Optimized G-P Algorithm

方若望 1何越磊 1李再帏 1路宏遥 1赵彦旭2

作者信息

  • 1. 上海工程技术大学城市轨道交通学院 上海 201620
  • 2. 中铁二十一局集团有限公司 兰州 730070
  • 折叠

摘要

Abstract

In order to solve problems in the study of the mainstream algorithm G-P algorithm of chaotic associated dimension,including the cycle structure of the phase space and distance matrix,the relevant parameter selection is not properly affected,and the Heaviside step function determines redundant,etc.,an improved G-P algorithm is proposed.The algorithm is optimized in prin-ciple and repetition calculation,and operates a subsequent matrix on the basis of the original matrix and sorts the distance matrix to avoid cyclic judgment,which greatly reduces the calculation cycle.It makes decisions to the related parameters,and makes the con-clusion strictly.The non-scaling section of the double logarithmic image is determined by the Taylor grade method,making it more intuitive.Subsequently,the system data is used for case analysis,the results of simulation also prove the accuracy of the improved algorithm.

关键词

混沌/相空间重构/关联维数/算法优化/G-P算法

Key words

chaos/phase space reconstruction/correlation dimension/algorithmic optimization/G-P algorithm

分类

信息技术与安全科学

引用本文复制引用

方若望,何越磊,李再帏,路宏遥,赵彦旭..基于优化G-P算法求解关联维数[J].计算机与数字工程,2024,52(5):1270-1274,5.

基金项目

国家自然科学基金项目(编号:51978393) (编号:51978393)

甘肃省科技计划项目(编号:19ZD2FA001) (编号:19ZD2FA001)

中国铁建科技研发计划项目(编号:2019-B08)资助. (编号:2019-B08)

计算机与数字工程

OACSTPCD

1672-9722

访问量3
|
下载量0
段落导航相关论文