| 注册
首页|期刊导航|计算机与数字工程|基于改进的YOLOv3算法的船舶目标检测

基于改进的YOLOv3算法的船舶目标检测

张帆 姜文刚

计算机与数字工程2024,Vol.52Issue(5):1348-1352,1372,6.
计算机与数字工程2024,Vol.52Issue(5):1348-1352,1372,6.DOI:10.3969/j.issn.1672-9722.2024.05.015

基于改进的YOLOv3算法的船舶目标检测

Ship Target Detection Based on Improved YOLOv3 Algorithm

张帆 1姜文刚1

作者信息

  • 1. 江苏科技大学电子信息学院 镇江 212100
  • 折叠

摘要

Abstract

Aiming at the problems of various target scales and complex background on the water surface,this paper proposes an improved YOLOv3 algorithm.By adding the adaptive feature fusion ASFF network structure,it can effectively fuse features of dif-ferent scales and improve the detection ability of the detection network for multi-size targets.By using the CIOU loss function,the positioning accuracy of the detection frame under complex background can be improved.By using the soft non-maximum suppres-sion algorithm Soft-NMS algorithm solves the problem of erroneous deletion of target frames under multi-target overlapping.Experi-mental results show that the detection accuracy of the method proposed in this paper is better than other algorithms,and the detec-tion of small targets is improved to a certain extent.

关键词

目标检测/YOLOv3/CIOU/ASFF/Soft-NMS

Key words

target detection/YOLOv3/CIOU/ASFF/Soft-NMS

分类

信息技术与安全科学

引用本文复制引用

张帆,姜文刚..基于改进的YOLOv3算法的船舶目标检测[J].计算机与数字工程,2024,52(5):1348-1352,1372,6.

基金项目

国家自然科学基金项目(编号:61671222)资助. (编号:61671222)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文