| 注册
首页|期刊导航|计算机与数字工程|基于协方差度量矩阵的多尺度融合的小样本学习

基于协方差度量矩阵的多尺度融合的小样本学习

莫春晗 陆建峰

计算机与数字工程2024,Vol.52Issue(5):1373-1376,1405,5.
计算机与数字工程2024,Vol.52Issue(5):1373-1376,1405,5.DOI:10.3969/j.issn.1672-9722.2024.05.019

基于协方差度量矩阵的多尺度融合的小样本学习

Few-Shot Learning Based on Multi-Scale Fusion of Covariance Metric Matrix

莫春晗 1陆建峰1

作者信息

  • 1. 南京理工大学计算机科学与工程学院 南京 210094
  • 折叠

摘要

Abstract

For the image classification problem with limited training samples,the existing deep neural network-based models have exposed many problems.For example,traditional algorithms based on metric learning usually rely on the pre-defined distance measurement,which makes it difficult for the model to capture the differences among classes when there are too many classes to be classified.Moreover,they only focus on the relational calculation of first-order statistics and the utilization of high-level semantic information,and ignore the low-level but abundant visual features.To address above issues,in this paper,a multi-scale fusion al-gorithm is proposed based on the covariance metric matrix.The second-order statistics under different scale is used to update model parameters.Experimental results show that the proposed model can effectively improve the accuracy of few-shot image classifica-tion,which indicates its promising value in real-world applications.

关键词

协方差度量矩阵/多尺度融合/小样本学习

Key words

covariance measure matrix/multi-scale fusion/few-shot learning

分类

信息技术与安全科学

引用本文复制引用

莫春晗,陆建峰..基于协方差度量矩阵的多尺度融合的小样本学习[J].计算机与数字工程,2024,52(5):1373-1376,1405,5.

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文