| 注册
首页|期刊导航|计算机与数字工程|基于深度学习的电机故障诊断

基于深度学习的电机故障诊断

王晓兰 马泽娟 王惠中

计算机与数字工程2024,Vol.52Issue(5):1536-1540,5.
计算机与数字工程2024,Vol.52Issue(5):1536-1540,5.DOI:10.3969/j.issn.1672-9722.2024.05.047

基于深度学习的电机故障诊断

Motor Fault Diagnosis Based on Deep Learning

王晓兰 1马泽娟 1王惠中1

作者信息

  • 1. 兰州理工大学 兰州 730050
  • 折叠

摘要

Abstract

Fault diagnosis plays a very important role in ensuring the stable operation of motor.Therefore,fault diagnosis is a hot topic in current research.In this study,the short-time Fourier transform is used to transform the one-dimensional vibration sig-nal into a two-dimensional time-frequency diagram,so as to solve the nonlinear and instability problems of the vibration signal of the motor bearing.As the input of the convolutional neural network,the sample data set is formed through the direct extraction of the fault feature signal.The fault diagnosis model is established by convolution neural network and softmax multi-classifier,and the ac-curacy of the algorithm optimization is verified in Python,which proves that the algorithm can improve the accuracy of motor fault di-agnosis.

关键词

卷积神经网络/softmax多分类器/故障诊断/短时傅里叶变换

Key words

convolutional neural network/softmax multi-classifier/fault diagnosis/short time Fourier transform

分类

机械制造

引用本文复制引用

王晓兰,马泽娟,王惠中..基于深度学习的电机故障诊断[J].计算机与数字工程,2024,52(5):1536-1540,5.

基金项目

国家自然科学基金项目(编号:61963024)资助. (编号:61963024)

计算机与数字工程

OACSTPCD

1672-9722

访问量2
|
下载量0
段落导航相关论文