| 注册
首页|期刊导航|计算机与数字工程|基于改进级联卷积神经网络的织物疵点检测

基于改进级联卷积神经网络的织物疵点检测

李小庆 张俊杰 杜小勤 梁晶 袁桦

计算机与数字工程2024,Vol.52Issue(5):1557-1562,1568,7.
计算机与数字工程2024,Vol.52Issue(5):1557-1562,1568,7.DOI:10.3969/j.issn.1672-9722.2024.05.051

基于改进级联卷积神经网络的织物疵点检测

Fabric Defect Detection Based on Improved Cascade R-CNN

李小庆 1张俊杰 2杜小勤 1梁晶 1袁桦3

作者信息

  • 1. 纺织服装智能化湖北省工程研究中心 武汉 430200||湖北省服装信息化工程技术研究中心 武汉 430200||武汉纺织大学计算机与人工智能学院 武汉 430200
  • 2. 纺织服装智能化湖北省工程研究中心 武汉 430200||湖北省服装信息化工程技术研究中心 武汉 430200||武汉纺织大学计算机与人工智能学院 武汉 430200||湖北省服饰艺术与文化研究中心 武汉 430073
  • 3. 武汉纺织服装数字化工程技术研究中心 武汉 430073
  • 折叠

摘要

Abstract

The work aims to propose an end-to-end improved algorithm for fabric defect detection in order to solve the prob-lems in the current cloth detection algorithm including few samples,low defect detection accuracy and poor positioning accuracy.Aiming at the problem of lacking samples and imbalance of classes in public data sets,offline and online data augmentation meth-ods are adopted.In addition to basic data augmentation methods,copy-paste and mixup are also introduced to expand and grow sam-ples.Aiming at the poor accuracy features extracted by the feature extraction algorithm,the feature pyramid network is improved by adding deformable convolution,recursive feature pyramid,switchable atrous convolution,global context to enlarge the receptive field and enhance semantic information.The experimental results verify the effectiveness of the algorithm.This algorithm can defect 9 kinds of cloth defects,the accuracy of detecting whether the fabric is defective is above 97%,the average detection accuracy of de-fect location is 56.7%and the efficiency of sample detecting is 2.4 FPS on TIANCHI-XUELANGAI dataset.Compared with the ba-sic model,the positioning accuracy has been improved by more than 10%and the algorithm meeting industrial production needs.

关键词

织物疵点检测/级联卷积神经网络/数据增广/递归特征金字塔/可切换空洞卷积

Key words

fabric target detection/Cascade R-CNN/data augmentation/recursive feature pyramid/switchable atrous con-volution

分类

轻工纺织

引用本文复制引用

李小庆,张俊杰,杜小勤,梁晶,袁桦..基于改进级联卷积神经网络的织物疵点检测[J].计算机与数字工程,2024,52(5):1557-1562,1568,7.

基金项目

湖北省普通高校人文社会科学重点研究基地项目(编号:2021HFG007)资助. (编号:2021HFG007)

计算机与数字工程

OACSTPCD

1672-9722

访问量2
|
下载量0
段落导航相关论文