| 注册
首页|期刊导航|计算机与数字工程|基于多模型BP神经网络算法的湿化器的湿度预测控制

基于多模型BP神经网络算法的湿化器的湿度预测控制

苏健

计算机与数字工程2024,Vol.52Issue(5):1587-1591,5.
计算机与数字工程2024,Vol.52Issue(5):1587-1591,5.DOI:10.3969/j.issn.1672-9722.2024.05.056

基于多模型BP神经网络算法的湿化器的湿度预测控制

Humidity Predictive Control of Humidifier Based on Multi-model BP Neural Network Algorithm

苏健1

作者信息

  • 1. 沈阳化工大学信息工程学院 沈阳 110000
  • 折叠

摘要

Abstract

The humidity control effect of high-flow respiratory humidifier is an important standard to measure the quality of hu-midifier.Since humidity sensor is not used to collect data in real time at the air outlet of humidifier,the humidity of air-oxygen mix-ture at the air outlet of humidifier cannot be monitored in real time,so a complete closed-loop negative feedback system cannot be built.Only an open-loop system can be constructed with control based on estimated data.For humidity predictive control of humidifi-er,a BP neural network algorithm based on multi-model switching is proposed,which is linearized at the target temperature equilib-rium point,and the model is selected according to the change of flow rate.The experimental results show that the humidity predic-tive control system of humidifier has higher control quality and is suitable for different temperature and flow rate.

关键词

湿化器/湿度预测/多模型/BP神经网络算法/线性化

Key words

wet process/humidity prediction/multiple model/BP neural network algorithm/linearization

分类

信息技术与安全科学

引用本文复制引用

苏健..基于多模型BP神经网络算法的湿化器的湿度预测控制[J].计算机与数字工程,2024,52(5):1587-1591,5.

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文