基于动态双种群的黏菌和花粉混合算法OA北大核心CSTPCD
Slime mould and flower pollination hybrid algorithm based on dynamic dual population
针对单一启发式算法易受自身原理导致的全局和局部搜索不平衡的问题,提出了一种基于动态双种群的黏菌和花粉混合算法HASMFP.首先,通过种群个体和当前最优个体之间的距离,将种群动态划分为黏菌子种群和花粉子种群分别进行搜索,以更有效地平衡算法的探索能力和开发能力;其次,对全局搜索融入相似度与适应度的综合排序感知机制来提高黏菌子种群的多样性,以帮助黏菌算法跳出局部最优;最后,在标准花粉算法的全局搜索中加入动态权重和恒定收缩系数,并对局部搜索设计了精英引导项来提高算法的收敛速度和搜索精度.选用CEC2017测试集中的12个函数作为实验测试集,将HASMFP与ISMA、DTSMA、HLFPA、SCFPA和tMFPA五种改进算法进行性能测试对比.还对HASMFP的各个改进策略进行消融实验,实验表明在综合改进策略的共同作用下,HASMFP的优化性能排名第一.基于实验结果的Friedman检验表明,HASMFP能够获取最优的性能.
Aiming at overcoming drawbacks of imbalance between the global and local search ability of a single heuristic algo-rithm,this paper proposed a slime mould and flower pollination hybrid algorithm based on dynamic dual population,named HASMFP.Firstly,HASMFP adopted a grouping mechanism that took the distance between individual inside population and the current optimal individual into consideration to dynamically divide whole population into slime mold subpopulation and pol-len subpopulation to balance the exploration and development capabilities of the algorithm more effectively.Secondly,HASMFP used a ranking mechanism based on similarity and fitness to improve diversity of slime mold population,and further increased the probability to jump out of local optimal.Finally,HASMFP also adopted a dynamic weights and constant shrin-kage coefficients with an elite guidance terms to further enhance the local and global search ability of standard flower pollina-tion algorithm at the same time.It used 12 test functions from CEC2017 test suit as the testbed to evaluate the performance of HASMFP with other 5 algorithms:ISMA,DTSMA,HLFPA,SCFPA,and tMFPA.It conducted ablation experiments to eva-luate the effectiveness of all improvement strategies applied in HASMFP.Experimental result shows that HASMFP can rank first under the combination of all improvement strategies.The result of Friedman test based on experimental data illustrates that HASMFP can achieve the supreme performance among all evaluated algorithms.
李大海;刘晓峰;王振东
江西理工大学信息工程学院,江西赣州 341000
计算机与自动化
混合算法黏菌算法花粉算法动态双种群综合排序感知精英引导项动态权重
hybrid algorithmslime mould algorithmflower pollination algorithmdynamic dual populationsimilarity and fitness rankingelite guidance termdynamic weight
《计算机应用研究》 2024 (007)
2052-2060 / 9
国家自然科学基金资助项目(61563019,615620237);江西理工大学校级基金资助项目(205200100013)
评论