| 注册
首页|期刊导航|计算机应用研究|增强型野马优化算法及其工程应用

增强型野马优化算法及其工程应用

马志海 刘升

计算机应用研究2024,Vol.41Issue(7):2061-2068,8.
计算机应用研究2024,Vol.41Issue(7):2061-2068,8.DOI:10.19734/j.issn.1001-3695.2023.10.0505

增强型野马优化算法及其工程应用

Enhanced wild horse optimization algorithm and its engineering application

马志海 1刘升1

作者信息

  • 1. 上海工程技术大学管理学院,上海 201620
  • 折叠

摘要

Abstract

To overcome the weaknesses of wild horse optimization algorithm,such as easy to fall into local optima and slow convergence speed,this paper proposed an enhanced wild horse optimization algorithm.Firstly,in the population initialization stage,it utilized Sinusoidal mapping to increase the diversity of the population.Secondly,in the stage update process,it de-signed adaptive weights with stronger nonlinear convergence to adjust the abilities of global search and local optimization.Then,it introduced perturbation factors in the leader position update stage to balance local and global exploration capabilities.Furthermore,it utilized adaptive t-distribution mutation to perturb the individual positions and improve the algorithm's ability to jump out of local optima.The effectiveness and robustness of the algorithm were validated by optimization comparisons in the CEC2021 competition test set,and the efficacy of the algorithm was verified through Wilcoxon rank sum test and MAE rank-ing.Finally,it applied the algorithm to two engineering problems,which verified the applicability and superiority of the algo-rithm for engineering optimization problems.The experimental results indicate that the enhanced wild horse optimization algo-rithm exhibits stronger optimization capabilities and faster convergence speed,which compared to other intelligent algorithms.

关键词

野马优化算法/Sinusoidal映射/自适应t分布/工程优化

Key words

wild horse optimization algorithm/Sinusoidal mapping/adaptive t-distribution/engineering optimization

分类

信息技术与安全科学

引用本文复制引用

马志海,刘升..增强型野马优化算法及其工程应用[J].计算机应用研究,2024,41(7):2061-2068,8.

基金项目

国家自然科学基金资助项目(61673258,61075115) (61673258,61075115)

上海市自然科学基金资助项目(19ZR1421600) (19ZR1421600)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文