|国家科技期刊平台
首页|期刊导航|计算机应用研究|基于用户相关性的差分隐私轨迹隐私保护方案

基于用户相关性的差分隐私轨迹隐私保护方案OA北大核心CSTPCD

Differential privacy trajectory privacy protection scheme based on user correlation

中文摘要英文摘要

在使用位置查询服务时需要提供用户真实位置信息,导致用户信息泄露.大部分研究只针对单个用户的隐私保护,而忽略了多用户之间的相关性.针对轨迹隐私保护中多用户相关性的问题,提出了 一种基于用户相关性的差分隐私轨迹隐私保护方案.首先,构建历史轨迹树,利用变阶马尔可夫模型预测用户轨迹,从轨迹集合中生成一组高可用性的轨迹数据集;其次,根据用户轨迹之间的相关性获取一组关联性较低的预测轨迹集;最后,通过自定义隐私预算的方法,根据用户不同的隐私需求动态调整每个位置点的隐私预算并为发布轨迹添加拉普拉斯噪声.实验结果表明:与LPADP算法相比,该算法的执行效率提升了 10%~15.9%;与PTPP和LPADP算法相比,该算法的数据可用性提升了 11%~16.1%,同时提升了隐私保护程度.

When using location-based services,users need to provide their real location information,which may lead to the leakage of user information.Most research only focuses on the privacy protection of individual users,while ignoring the corre-lation among multiple users.This paper proposed a differential privacy trajectory protection scheme based on user correlation for trajectory privacy protection issues involving multiple users.Firstly,it constructed a historical trajectory tree and used a variable-order Markov model to predict user trajectories,generating a set of highly usable trajectory datasets from the collection of trajectories.Secondly,it obtained a set of predicted trajectories with lower correlation based on the inter-user trajectory cor-relations.Finally,by customizing the privacy budget method,it dynamically adjusted the privacy budget for each location point according to different user privacy needs and added Laplacian noise to the published trajectories.Experimental results show that compared to the LPADP algorithm,this algorithm improves execution efficiency by 10%~15.9%.Compared to both PTPP and LPADP algorithms,it enhances data usability by 11%~16.1%,while also increasing the level of privacy protection.

刘沛骞;贾庆林;王辉;申自浩

河南理工大学软件学院,河南焦作 454000河南理工大学计算机科学与技术学院,河南焦作 454000

计算机与自动化

位置隐私轨迹隐私保护差分隐私变阶马尔可夫模型

location privacytrajectory privacy protectiondifferential privacyvariable-order Markov model

《计算机应用研究》 2024 (007)

2189-2194 / 6

国家自然科学基金资助项目(61300216);河南省高等学校重点科研项目(23A520033);河南理工大学博士基金资助项目(B2022-16,B2020-32)

10.19734/j.issn.1001-3695.2023.10.0539

评论