| 注册
首页|期刊导航|计算机应用研究|融合多粒度注意力特征的小样本分类模型

融合多粒度注意力特征的小样本分类模型

韩岩奇 苟光磊 李小菲 朱东华

计算机应用研究2024,Vol.41Issue(7):2235-2240,6.
计算机应用研究2024,Vol.41Issue(7):2235-2240,6.DOI:10.19734/j.issn.1001-3695.2023.09.0513

融合多粒度注意力特征的小样本分类模型

Few-shot classification model incorporating multi-granular attention features

韩岩奇 1苟光磊 2李小菲 1朱东华1

作者信息

  • 1. 重庆理工大学计算机科学与工程学院,重庆 400054
  • 2. 重庆理工大学大数据与人工智能实验室,重庆 400054
  • 折叠

摘要

Abstract

In the few-shot classification tasks,existing CNN models suffer from insufficient feature extraction,limited feature diversity and weak differentiation between classes in few-shot datasets,leading to low classification accuracy.To address these issues,this paper proposed a few-shot classification model called FMAF.Firstly,this method incorporated multi-granularity thought into the architecture of CNN feature extraction network to enhance feature diversity.Secondly,after the multi-granular feature extraction network,FMAF added a self-attention layer to extract key features from the multi-granular image features,based on the multi-granular attention features,FMAF employed a feature fusion method to combine the information from multiple-granularity attention features,highlighted the crucial features and improved feature representativeness.Finally,this paper uti-lized two classical few-shot datasets for experimental verification on miniImageNet and tieredImageNet.Experimental results show that FMAF method can effectively improve the accuracy and efficiency of classification.

关键词

小样本学习/多粒度特征融合/自注意力机制/标签传播

Key words

FSL/multi-granular feature fusion/self-attention mechanism/label propagation

分类

信息技术与安全科学

引用本文复制引用

韩岩奇,苟光磊,李小菲,朱东华..融合多粒度注意力特征的小样本分类模型[J].计算机应用研究,2024,41(7):2235-2240,6.

基金项目

国家自然科学基金资助项目(62141201) (62141201)

重庆市教委科学技术研究项目(202201102) (202201102)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文