|国家科技期刊平台
首页|期刊导航|军事医学|语言模型辅助人工智能抗体设计与优化的研究热点和进展分析

语言模型辅助人工智能抗体设计与优化的研究热点和进展分析OACSTPCD

Research hotspots and progress in language model-assisted artificial intelligence for antibody design and optimization

中文摘要英文摘要

目的 分析语言模型辅助人工智能抗体设计与优化研究领域的研究热点及进展,为抗体开发领域研究人员提供参考依据.方法 通过CiteSpace软件对Web of Science、Pubmed和Scopus数据库中收集到的抗体设计与优化研究领域中3个重要研究任务(抗体预训练语言模型构建、抗体序列生成、抗体三维结构预测)的文献进行总体研究热点分析,并对各研究任务下的重要研究进展进行梳理总结,分析具体研究工作的异同点和当前研究面临的问题.结果 2019年(10篇文献)至2023年(89篇文献),3个研究任务的研究规模和研究热度不断攀升.总体研究热点聚焦于通过语言模型辅助设计或优化得到人源化、亲和力高以及特异性强的抗体.在各研究任务中,模型架构多样性、训练数据一致性以及训练策略差异性反映了研究方法的特点.同时,当前研究仍然面临着抗原数据稀疏、计算算力限制以及干湿实验结合不足等问题.结论 语言模型辅助人工智能抗体设计与优化的相关研究正在逐步兴起,目前已经取得了一定的成果,但研究者仍需解决模型对抗原抗体相互作用信息忽略和实验验证与模拟计算结合缺乏的问题,深化研究内容并扩展实际应用场景.

Objective To analyze the hotspots and developments in the field of language model-assisted artificial intelli-gence(Al)for antibody design and optimization in order to provide reference for research on development of antibodies.Methods By using CiteSpace software,hotspots of research were analyzed based on literature retrieved from the Web of Science,PubMed,and Scopus databases,focusing on three pivotal areas of research related to antibody design and optimization:the construction of pre-trained language models for antibodies,the generation of antibody sequences,and the prediction of three-dimensional structures of antibodies.In addition,this analysis reviewed the major advances in each of the specified research tasks,focusing on the delineation of similarities and differences across studies and dominating challenges in this field.Results From 2019(10 publications)to 2023(89 publications),the scale of and interest in this field kept increasing.Hotspots involved leveraging language models to assist the design or optimization of humanized,high-affinity,and highly specific antibodies.Within each research,methods were characterized by the diversity of model architectures,consistency of training data,and variations in training strategies.Challenges to the field included sparse antigen data,computational power limitations,and insufficient integration of wet and dry lab experiments.Conclusion Research in language model-assisted Al antibody design and optimization is gaining momentum and proves fruitful.However,researchers should be alert to the inadequate attention to antigen-antibody interactions and insufficient integration of experimental and computational validation,conduct more in-depth research and expand applications.

赵文彬;罗霄伟;佟凡;郑翔文;赵东升

军事科学院军事医学研究院,北京 100850

基础医学

抗体设计抗体优化深度学习语言模型

antibody designantibody optimizationdeep learninglanguage model

《军事医学》 2024 (007)

524-529 / 6

10.7644/j.issn.1674-9960.2024.07.007

评论