|国家科技期刊平台
首页|期刊导航|现代制造工程|移动机器人多传感器数据融合方法研究

移动机器人多传感器数据融合方法研究OA北大核心CSTPCD

Research on the method of multi-sensor data fusion for mobile robots

中文摘要英文摘要

多传感器数据融合技术能够更好地解决智能设备产生的数据不兼容问题,提高设备运行效率和生产力.现有方法缺乏高性能表现以及未考虑数据隐私保护问题,将联邦学习引入多传感器数据融合中,联邦学习局部模型采用门控循环单元(Gated Recurrent Unit,GRU)算法解决多传感器数据拟合问题,首次设计了一种在时间域和空间域上并行的立体式多传感器数据融合方法,该方法既具备优异的融合性能,又保证了各客户端数据的隐私性.实验结果表明了该方法的正确性与合理性,并在鲁棒性方面呈现出优势.

Multi-sensor data fusion technology can better solve the problem of data incompatibility generated by smart devices,im-prove device operational efficiency and productivity.Existing methods lack high-performance performance and do not consider data privacy protection issues.It innovatively introduced federated learning into multi-sensor data fusion.The federated learning local model used the Gated Recurrent Unit(GRU)algorithm to solve the multi-sensor data fitting problem.A novel parallel stere-oscopic multi-sensor data fusion method was designed for the first time,which has excellent fusion performance and ensures the privacy of each client's data.The experimental results demonstrate the correctness and rationality of this method,as well as its ad-vantages in robustness.

冯婧;魏航信;岳高峰;王煜坤;秦乐;席文奎;孙文

西安石油大学机械工程学院,西安 710065西安交通大学网络空间安全学院,西安 710049

计算机与自动化

移动机器人多传感器数据融合联邦学习

mobile robotsmulti-sensordata fusionfederated learning

《现代制造工程》 2024 (007)

69-76 / 8

陕西省自然科学基础研究计划项目(2022-JQ571);陕西省厅市联动重点项目(2022GD-TSLD-22)

10.16731/j.cnki.1671-3133.2024.07.009

评论