| 注册
首页|期刊导航|机电工程技术|噪声背景下的MSECAE轴承故障诊断方法研究

噪声背景下的MSECAE轴承故障诊断方法研究

徐坤 任万凯 王晓夫 魏志民 潘作舟 刘征 蔡木霞

机电工程技术2024,Vol.53Issue(7):29-33,180,6.
机电工程技术2024,Vol.53Issue(7):29-33,180,6.DOI:10.3969/j.issn.1009-9492.2024.07.006

噪声背景下的MSECAE轴承故障诊断方法研究

Research on MSECAE Bearing Fault Diagnosis Method Under Noise Background

徐坤 1任万凯 1王晓夫 1魏志民 2潘作舟 1刘征 1蔡木霞1

作者信息

  • 1. 南京工业大学机械与动力工程学院,南京 211816
  • 2. 天津中德应用技术大学航空航天学院,天津 300350
  • 折叠

摘要

Abstract

In response to the problems of single scale feature extraction,poor noise resistance in traditional fault diagnosis based deep learning,a multi-scale convolutional autoencoder fusion efficient channel attention mechanism(MSECAE)method for fault diagnosis of bearings is proposed.Firstly,the Fourier transform is used to normalize the raw data,the original one-dimensional vibration signal is converted to the frequency domain for representation,which is beneficial for the model to extract features.Secondly,the MSECAE structure is constructed,and multi-scale convolution(MSCNN)is used to extract multi-scale features from the original information.An efficient channel attention mechanism(ECA)is used to dynamically select the size of the convolution kernel,and different weights are assigned based on the importance of features in each channel.To verify the performance of the proposed model,multiple experiments are conducted using datasets with two different sampling frequencies under four different noise conditions,and compared with other models.The experimental results show that compared with other models,the proposed model has a classification accuracy of over 99%,better generalization ability,and stronger robustness.

关键词

故障诊断/多尺度卷积模块/高效通道注意力机制(ECA)/轴承

Key words

fault diagnosis/multi scale convolution module/effective channel attention(ECA)/bearings

分类

机械制造

引用本文复制引用

徐坤,任万凯,王晓夫,魏志民,潘作舟,刘征,蔡木霞..噪声背景下的MSECAE轴承故障诊断方法研究[J].机电工程技术,2024,53(7):29-33,180,6.

基金项目

天津市教委科研计划项目(2021KJ102) (2021KJ102)

机电工程技术

1009-9492

访问量0
|
下载量0
段落导航相关论文