| 注册
首页|期刊导航|机电工程技术|基于YOLOv5的无人机视角小目标检测算法

基于YOLOv5的无人机视角小目标检测算法

宋旭东 查可豪

机电工程技术2024,Vol.53Issue(7):46-50,73,6.
机电工程技术2024,Vol.53Issue(7):46-50,73,6.DOI:10.3969/j.issn.1009-9492.2024.07.009

基于YOLOv5的无人机视角小目标检测算法

UAV Small Target Detection Algorithm Based on YOLOv5

宋旭东 1查可豪2

作者信息

  • 1. 大连交通大学计算机与通信工程学院,辽宁大连 116028
  • 2. 大连交通大学软件学院,辽宁大连 116028
  • 折叠

摘要

Abstract

Aiming at the problems of poor detection accuracy and serious missed detection of small targets from the perspective of UAV,a UAV image detection algorithm based on improved YOLOv5 is proposed.Aiming at the problem of small target scale,Spatial Pyramid Pooling(SPP)is replaced by SPPCSPC-GS in the backbone network to enhance the attention ability of dense areas and extract more effective features of small targets.The CBAM attention mechanism is introduced into the neck network to replace the head C3 module with C3CBAM to enhance the context information and improve the spatial and channel feature expression ability.Aiming at the occlusion problem,soft non maximum suppression(Soft NMS)is introduced to improve the detection ability of the model for occlusion and dense targets.The loss function is replaced with EIOU to accelerate convergence and improve positioning effect.The improved model has an average detection accuracy of 42.2% on the VisDrone dataset,which is 10.7% higher than the original YOLOv5s algorithm.The accuracy of small target pedestrians and people with severe occlusion increases by 12% and 13.3%,respectively.Compared with other advanced algorithms,the proposed algorithm performs well and can meet the requirements of UAV perspective image detection tasks.

关键词

小目标检测/空间金字塔池化/注意力机制/柔性非极大值抑制/损失函数

Key words

small target detection/spatial pyramid pooling/attention mechanism/soft-NMS/loss function

分类

信息技术与安全科学

引用本文复制引用

宋旭东,查可豪..基于YOLOv5的无人机视角小目标检测算法[J].机电工程技术,2024,53(7):46-50,73,6.

基金项目

辽宁省自然科学基金(2019-ZD-0105) (2019-ZD-0105)

机电工程技术

1009-9492

访问量0
|
下载量0
段落导航相关论文