基于SSA-CNN-CBAM的超声气固两相流浓度信息识别OA
Ultrasonic Gas-solid Two-phase Flow Concentration Information Identification Based on SSA-CNN-CBAM
气力运输在某些工业生产流程中一直是重要的一环,对于金属管道内的气固两相流流量的精确实时检测随着工业环境对检测技术要求的不断提高一直是一大挑战.针对该问题提出了一种结合麻雀优化算法(SSA)、卷积神经网络(CNN)、注意力模块(CBAM)的混合模型,用于识别气固两相流浓度.利用SSA对CNN-CBAM模型的参数完成寻优,构建SSA-CNN-CBAM混合模型进行超声后向散射波形识别,得到对浓度的分类结果.通过反复实验,将混合模型实验结果与SSA-CNN模型、CNN-CBAM模型、CNN模型的实验结果进行对比,结果表明此模型对气固两相流浓度的分类识别结果更加理想.试验结果表明该方法可以实现对气固两相流输送的实时浓度检测,通过该试验为工业上的气固两相流输送检测提供参考,为相关技术的发展和应用提供新的思路和方法.
Pneumatic transportation has always been an important part of some industrial production processes,and the accurate and real-time detection of gas-solid two-phase flow in metal pipelines has always been a major challenge with the continuous improvement of detection technology requirements in industrial environments.To solve this problem,a hybrid model is proposed combining Sparrow Optimization Algorithm(SSA),Convolutional Neural Network(CNN)and Attention Module(CBAM)to identify the concentration of gas-solid two-phase flow.SSA is used to optimize the parameters of the CNN-CBAM model,and the SSA-CNN-CBAM hybrid model is constructed for ultrasonic backscatter waveform recognition,and the classification results of concentration are obtained.Through repeated experiments,the experimental results of the mixed model are compared with the experimental results of the SSA-CNN model,the CNN-CBAM model and the CNN model,and the results show that the proposed model is more ideal for the classification and identification of gas-solid two-phase flow concentration.The test results show that the method can realize the real-time concentration detection of gas-solid two-phase flow transportation,which provides a reference for the detection of gas-solid two-phase flow transportation in industry,and provides new ideas and methods for the development and application of related technologies.
张芮铭;侯怀书
上海应用技术大学机械工程学院,上海 201418
计算机与自动化
超声后向散射气固两相流浓度麻雀优化算法卷积神经网络注意力模块
ultrasonic backscatteringgas-solid two-phase flowconcentrationsparrow optimization algorithmconvolutional neural networkattention module
《机电工程技术》 2024 (007)
119-125 / 7
评论