| 注册
首页|期刊导航|机械与电子|基于信息融合和SA-CNN的轴承故障诊断

基于信息融合和SA-CNN的轴承故障诊断

王云 徐彦伟 何可承 颉潭成 王军华 蔡海潮

机械与电子2024,Vol.42Issue(7):3-9,7.
机械与电子2024,Vol.42Issue(7):3-9,7.

基于信息融合和SA-CNN的轴承故障诊断

Bearing Fault Diagnosis Method Based on Information Fusion and Self-attention Convolutional Neural Network

王云 1徐彦伟 2何可承 1颉潭成 2王军华 2蔡海潮1

作者信息

  • 1. 河南科技大学机电工程学院,河南洛阳 471003
  • 2. 河南科技大学机电工程学院,河南洛阳 471003||智能数控装备河南省工程实验室,河南洛阳 471003
  • 折叠

摘要

Abstract

Aiming at the problems of difficulty in bearing fault feature extraction,single input signal and low fault recognition rate,a bearing fault diagnosis method based on multi-head attention information fusion and self attention convolutional neural network(SA-CNN)was proposed.Firstly,the bearing fail-ure of metro traction motor was pre-made.The bearing test stand with variable working conditions was built and the experimental scheme was designed to collect the bearing vibration signal and sound emission signal.Next,the multi-head attention mechanism is employed to fuse the vibration fault signals and a-coustic emission signals of the bearings.Finally,the fused signals are put into a self-attentive mechanism convolutional neural network for fault diagnosis.The final results show that based on multi-head atten-tion information fusion and SA-CNN can effectively pay attention to bearing fault characteristic signals,and improve the accuracy of bearing fault diagnosis under varying working conditions.

关键词

轴承故障诊断/多头注意力机制/信息融合/自注意力机制/CNN

Key words

bearing fault diagnosis/multi-head attention mechanism/information fusion/self-atten-tion mechanism/CNN

分类

机械制造

引用本文复制引用

王云,徐彦伟,何可承,颉潭成,王军华,蔡海潮..基于信息融合和SA-CNN的轴承故障诊断[J].机械与电子,2024,42(7):3-9,7.

基金项目

国家自然科学基金资助项目(51805151) (51805151)

河南省高等学校重点科研项目(21B460004) (21B460004)

机械与电子

OACSTPCD

1001-2257

访问量0
|
下载量0
段落导航相关论文