| 注册
首页|期刊导航|机械与电子|基于深度学习的光伏储能电站负荷模糊逻辑优化控制算法

基于深度学习的光伏储能电站负荷模糊逻辑优化控制算法

秦颖婕 樊玮 杨诚 刘宇 王馨尉 许琴

机械与电子2024,Vol.42Issue(7):31-35,5.
机械与电子2024,Vol.42Issue(7):31-35,5.

基于深度学习的光伏储能电站负荷模糊逻辑优化控制算法

Fuzzy Logic Optimization Control Algorithm for Load of Photovoltaic Energy Storage Power Station Based on Deep Learning

秦颖婕 1樊玮 1杨诚 1刘宇 1王馨尉 1许琴2

作者信息

  • 1. 广东电网有限责任公司电力调度控制中心,广东广州 510062
  • 2. 中国能源建设集团广东省电力设计研究院有限公司,广东广州 510663
  • 折叠

摘要

Abstract

The traditional load optimization control algorithm applied in photovoltaic energy storage stations cannot optimize and adjust the control based on real-time nonlinear load changes,resulting in waste of load power.A deep learning-based fuzzy logic optimization control algorithm for photovoltaic en-ergy storage station load is proposed to better adapt to changes in operating conditions of photovoltaic en-ergy storage stations.The unit failure trend is analyzed,the parameter degradation degree is calculated,the photovoltaic output situation is obtained,the load capacity of the energy storage power station unit is ob-tained,the load optimization model is established under fuzzy logic,the optimization objective function and power balance constraint conditions are established according to the fuzzy logic controller diagram,and the model is solved based on deep learning to realize the optimization of load distribution control.To verify the effectiveness of the design algorithm,a comparison is made between the traditional load control algorithm and the designed load control algorithm for photovoltaic energy storage stations.The results show that when considering the probability balance of power,the designed control algorithm has good response in terms of regulation,and there is no phenomenon of light abandonment,reducing the total output power of the power station.

关键词

深度学习/光伏储能电站/模糊逻辑/优化控制算法

Key words

deep learning/photovoltaic energy storage power station/fuzzy logic/optimize control algorithm

分类

信息技术与安全科学

引用本文复制引用

秦颖婕,樊玮,杨诚,刘宇,王馨尉,许琴..基于深度学习的光伏储能电站负荷模糊逻辑优化控制算法[J].机械与电子,2024,42(7):31-35,5.

基金项目

广东省重点领域研发计划资助项目(2019B111109001) (2019B111109001)

机械与电子

OACSTPCD

1001-2257

访问量0
|
下载量0
段落导航相关论文