土木工程设计公式智能发现方法OA北大核心CSTPCD
An intelligent discovery method for design formulas in civil engineering
土木工程智能计算技术具有高准确性和高效性,但由于黑盒性质,其结果难以被研究者与工程师理解,阻碍了其在以安全性为首要原则的实际工程中的推广应用.为此,提出一种基于量纲分析与工程先验知识的设计公式智能发现方法,通过智能计算技术自动从试验数据中识别出影响材料与构件性能的关键特征,并智能生成量纲平衡、物理含义清晰、力学可解释性高的设计计算公式.基于符号回归表达式树建立了考虑量纲约束的公式智能生成模型,能够保证公式的力学合理性;研发了针对多力学-几何变量场景的归一化方法与基于谱聚类和决策树的工程特征分段算法,进一步提高了模型的稳定性和准确性.以配筋水泥基材料连梁的受剪承载力为例验证该方法的有效性,结果表明:智能生成的公式相较于人工经验公式计算结果准确性提高61.3%,拟合相关性提高23.3%,相关系数达0.90,性能优异;此外,与传统符号回归方法相比,智能生成的公式不仅更为准确,且具有量纲正确性,工程泛化能力更强;同时,有助于揭示力学机理,加速新材料、新结构从试验到设计方法的落地转化流程.
Al-based computation in civil engineering exhibits high accuracy and efficiency.However,due to its black-box nature,the results are difficult for researchers and engineers to comprehend,impeding its application in practical engineering projects that prioritize safety.To address this issue,a design formula intelligent discovery method based on dimensional analysis and engineering prior knowledge is proposed.This method utilizes intelligent computing technology to automatically identify the key features affecting the performance of materials and components from experimental data and generate design formulas that are dimensionally balanced,physically meaningful,and mechanically interpretable.A formula intelligent generation model considering dimensional constraints is established based on symbolic regression expression trees,ensuring the mechanical rationality of the formulas.Normalization methods for scenarios with multiple mechanical-geometric variables and engineering feature segmentation algorithms based on spectral clustering and decision trees are developed to further improve the stability and accuracy of the model.The effectiveness of the method is verified using the shear bearing capacity of reinforced cementitious materials as an example.The results show that the intelligent-generated formulas improve the accuracy by 61.3%and the fitting correlation by 23.3%compared to empirical formulas generated manually,with R2 value of 0.90,demonstrating excellent performance.Moreover,compared to traditional symbolic regression methods,the intelligent-generated formulas are not only more accurate but also dimensionally correct,with stronger engineering generalization capabilities.Furthermore,the proposed method contributes to revealing the mechanical mechanisms and accelerating the translation process from experimental testing to design methods for new materials and structures.
陈培尧;王琛;丁然;樊健生
清华大学土木工程系,北京 100084
土木建筑
土木工程设计公式人工智能符号回归力学可解释性
civil engineeringdesign formulaartificial intelligencesymbolic regressionmechanical interpretability
《建筑结构学报》 2024 (007)
80-88 / 9
国家自然科学基金创新研究群体项目(52121005),国家自然科学基金重大项目(52293433),科学探索奖.
评论